A Critical Review on Selected External Physical Cues and Modulation of Cell Behavior: Magnetic Nanoparticles, Non-thermal Plasma and Lasers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
30586923
PubMed Central
PMC6463085
DOI
10.3390/jfb10010002
PII: jfb10010002
Knihovny.cz E-zdroje
- Klíčová slova
- cell signaling, cytotoxicity, lasers, magnetic nanoparticles, non-thermal plasma,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Physics-based biomedical approaches have proved their importance for the advancement of medical sciences and especially in medical diagnostics and treatments. Thus, the expectations regarding development of novel promising physics-based technologies and tools are very high. This review describes the latest research advances in biomedical applications of external physical cues. We overview three distinct topics: using high-gradient magnetic fields in nanoparticle-mediated cell responses; non-thermal plasma as a novel bactericidal agent; highlights in understanding of cellular mechanisms of laser irradiation. Furthermore, we summarize the progress, challenges and opportunities in those directions. We also discuss some of the fundamental physical principles involved in the application of each cue. Considerable technological success has been achieved in those fields. However, for the successful clinical translation we have to understand the limitations of technologies. Importantly, we identify the misconceptions pervasive in the discussed fields.
Institute of Experimental Medicine of the Czech Academy of Sciences 14220 Prague Czech Republic
Institute of Physics of the Czech Academy of Sciences 18221 Prague Czech Republic
Zobrazit více v PubMed
Keevil S.F. Physics and medicine: A historical perspective. Lancet. 2012;379:1517–1524. doi: 10.1016/S0140-6736(11)60282-1. PubMed DOI
Melzer A., Cochran S., Prentice P., MacDonald M.P., Wang Z., Cuschieri A. The importance of physics to progress in medical treatment. Lancet. 2012;379:1534–1543. doi: 10.1016/S0140-6736(12)60428-0. PubMed DOI
Masic I., Miokovic M., Muhamedagic B. Evidence based medicine—New approaches and challenges. Acta Inform. Med. 2008;16:219–225. doi: 10.5455/aim.2008.16.219-225. PubMed DOI PMC
Sackett D.L., Rosenberg W.M.C., Gray J.A.M., Haynes R.B., Richardson W.S. Evidence based medicine: What it is and what it isn’t—It’s about integrating individual clinical expertise and the best external evidence. BMJ. 1996;312:71–72. doi: 10.1136/bmj.312.7023.71. PubMed DOI PMC
Hore P.J. Are biochemical reactions affected by weak magnetic fields? Proc. Natl. Acad. Sci. USA. 2012;109:1357–1358. doi: 10.1073/pnas.1120531109. PubMed DOI PMC
Portelli L.A., Falldorf K., Thuroczy G., Cuppen J. Retrospective estimation of the electric and magnetic field exposure conditions in in vitro experimental reports reveal considerable potential for uncertainty. Bioelectromagnetics. 2018;39:231–243. doi: 10.1002/bem.22099. PubMed DOI
Isbary G., Zimmermann J.L., Shimizu T., Li Y.F., Morfill G.E., Thomas H.M., Steffes B., Heinlin J., Karrer S., Stolz W. Non-thermal plasma—More than five years of clinical experience. Clin. Plasma Med. 2013;1:19–23. doi: 10.1016/j.cpme.2012.11.001. DOI
Wilhelm S., Tavares A.J., Dai Q., Ohta S., Audet J., Dvorak H.F., Chan W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016;1:16014. doi: 10.1038/natrevmats.2016.14. DOI
Xia Y.N. Nanomaterials at work in biomedical research. Nat. Mater. 2008;7:758–760. doi: 10.1038/nmat2277. PubMed DOI
Xie J., Huang J., Li X., Sun S., Chen X. Iron oxide nanoparticle platform for biomedical applications. Curr. Med. Chem. 2009;16:1278–1294. doi: 10.2174/092986709787846604. PubMed DOI
Pankhurst Q., Jones S., Dobson J. Applications of magnetic nanoparticles in biomedicine: The story so far. J. Phys. D Appl. Phys. 2016;49:501002. doi: 10.1088/0022-3727/49/50/501002. DOI
Ahrens E.T., Bulte J.W.M. Tracking immune cells in vivo using magnetic resonance imaging. Nat. Rev. Immunol. 2013;13:755–763. doi: 10.1038/nri3531. PubMed DOI PMC
Tukmachev D., Lunov O., Zablotskii V., Dejneka A., Babic M., Sykova E., Kubinova S. An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale. 2015;7:3954–3958. doi: 10.1039/C4NR05791K. PubMed DOI
Kamau S.W., Hassa P.O., Steitz B., Petri-Fink A., Hofmann H., Hofmann-Amtenbrink M., von Rechenberg B., Hottiger M.O. Enhancement of the efficiency of non-viral gene delivery by application of pulsed magnetic field. Nucleic Acids Res. 2006;34:e40. doi: 10.1093/nar/gkl035. PubMed DOI PMC
Mykhaylyk O., Antequera Y.S., Vlaskou D., Plank C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc. 2007;2:2391–2411. doi: 10.1038/nprot.2007.352. PubMed DOI
Zablotskii V., Lunov O., Kubinova S., Polyakova T., Sykova E., Dejneka A. Effects of high-gradient magnetic fields on living cell machinery. J. Phys. D Appl. Phys. 2016;49:493003. doi: 10.1088/0022-3727/49/49/493003. DOI
Zablotskii V., Polyakova T., Lunov O., Dejneka A. How a high-gradient magnetic field could affect cell life. Sci. Rep. 2016;6:37407. doi: 10.1038/srep37407. PubMed DOI PMC
Finegold L., Flamm B.L. Magnet therapy. BMJ. 2006;332:4. doi: 10.1136/bmj.332.7532.4. PubMed DOI PMC
Flamm B.L. Magnet therapy: Healing or hogwash? Anesth. Analg. 2007;104:249–250. doi: 10.1213/01.ane.0000250925.20995.a1. PubMed DOI
Schenck J.F. Physical interactions of static magnetic fields with living tissues. Prog. Biophys. Mol. Biol. 2005;87:185–204. doi: 10.1016/j.pbiomolbio.2004.08.009. PubMed DOI
Pittler M.H., Brown E.M., Ernst E. Static magnets for reducing pain: Systematic review and meta-analysis of randomized trials. CMAJ. 2007;177:736–742. doi: 10.1503/cmaj.061344. PubMed DOI PMC
Lacy-Hulbert A., Metcalfe J.C., Hesketh R. Biological responses to electromagnetic fields. FASEB J. 1998;12:395–420. doi: 10.1096/fasebj.12.6.395. PubMed DOI
Schenck J.F. Safety of strong, static magnetic fields. J. Magn. Reson. Imaging. 2000;12:2–19. doi: 10.1002/1522-2586(200007)12:1<2::AID-JMRI2>3.0.CO;2-V. PubMed DOI
Grosberg A.Y. A few remarks evoked by Binhi and Savin’s review on magnetobiology. Phys. Usp. 2003;46:1113–1116. doi: 10.1070/PU2003v046n10ABEH001633. DOI
Cepeda M.S., Carr D.B., Sarquis T., Miranda N., Garcia R.J., Zarate C. Static magnetic therapy does not decrease pain or opioid requirements: A randomized double-blind trial. Anesth. Analg. 2007;104:290–294. doi: 10.1213/01.ane.0000230613.25754.08. PubMed DOI
Meister M. Physical limits to magnetogenetics. Elife. 2016;5:e17210. doi: 10.7554/eLife.17210. PubMed DOI PMC
Plank C., Zelphati O., Mykhaylyk O. Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv. Drug Deliv. Rev. 2011;63:1300–1331. doi: 10.1016/j.addr.2011.08.002. PubMed DOI PMC
Sapet C., Pellegrino C., Laurent N., Sicard F., Zelphati O. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo. Pharm. Res. 2012;29:1203–1218. doi: 10.1007/s11095-011-0629-9. PubMed DOI
Choi J.W., Park J.W., Na Y., Jung S.J., Hwang J.K., Choi D., Lee K.G., Yun C.O. Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy. Biomaterials. 2015;65:163–174. doi: 10.1016/j.biomaterials.2015.07.001. PubMed DOI
Grzeskowiak B.F., Sanchez-Antequera Y., Hammerschmid E., Doblinger M., Eberbeck D., Wozniak A., Slomski R., Plank C., Mykhaylyk O. Nanomagnetic activation as a way to control the efficacy of nucleic acid delivery. Pharm. Res. 2015;32:103–121. doi: 10.1007/s11095-014-1448-6. PubMed DOI
Sanchez-Antequera Y., Mykhaylyk O., van Til N.P., Cengizeroglu A., de Jong J.H., Huston M.W., Anton M., Johnston I.C., Pojda Z., Wagemaker G., et al. Magselectofection: An integrated method of nanomagnetic separation and genetic modification of target cells. Blood. 2011;117:e171–e181. doi: 10.1182/blood-2010-08-302646. PubMed DOI
Kami D., Takeda S., Itakura Y., Gojo S., Watanabe M., Toyoda M. Application of magnetic nanoparticles to gene delivery. Int. J. Mol. Sci. 2011;12:3705–3722. doi: 10.3390/ijms12063705. PubMed DOI PMC
Kami D., Takeda S., Makino H., Toyoda M., Itakura Y., Gojo S., Kyo S., Umezawa A., Watanabe M. Efficient transfection method using deacylated polyethylenimine-coated magnetic nanoparticles. J. Artif. Organs. 2011;14:215–222. doi: 10.1007/s10047-011-0568-6. PubMed DOI
Hashimoto M., Hisano Y. Directional gene-transfer into the brain by an adenoviral vector tagged with magnetic nanoparticles. J. Neurosci. Meth. 2011;194:316–320. doi: 10.1016/j.jneumeth.2010.10.027. PubMed DOI
Lu M., Shan Z., Andrea K., MacDonald B., Beale S., Curry D.E., Wang L., Wang S., Oakes K.D., Bennett C., et al. Chemisorption mechanism of DNA on Mg/Fe layered double hydroxide nanoparticles: Insights into engineering effective siRNA delivery systems. Langmuir. 2016;32:2659–2667. doi: 10.1021/acs.langmuir.5b04643. PubMed DOI
Namgung R., Singha K., Yu M.K., Jon S., Kim Y.S., Ahn Y., Park I.K., Kim W.J. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials. 2010;31:4204–4213. doi: 10.1016/j.biomaterials.2010.01.123. PubMed DOI
Chen C.B., Chen J.Y., Lee W.C. Fast transfection of mammalian cells using superparamagnetic nanoparticles under strong magnetic field. J. Nanosci. Nanotechnol. 2009;9:2651–2659. doi: 10.1166/jnn.2009.449. PubMed DOI
Zhang S., Gao H., Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9:8655–8671. doi: 10.1021/acsnano.5b03184. PubMed DOI PMC
Zhao J.C., Stenzel M.H. Entry of nanoparticles into cells: The importance of nanoparticle properties. Polym. Chem. 2018;9:259–272. doi: 10.1039/C7PY01603D. DOI
Canton I., Battaglia G. Endocytosis at the nanoscale. Chem. Soc. Rev. 2012;41:2718–2739. doi: 10.1039/c2cs15309b. PubMed DOI
Latham A.H., Williams M.E. Controlling transport and chemical functionality of magnetic nanoparticles. Acc. Chem. Res. 2008;41:411–420. doi: 10.1021/ar700183b. PubMed DOI
Estelrich J., Escribano E., Queralt J., Busquets M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015;16:8070–8101. doi: 10.3390/ijms16048070. PubMed DOI PMC
Grief A.D., Richardson G. Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 2005;293:455–463. doi: 10.1016/j.jmmm.2005.02.040. DOI
Ashouri M., Shafii M.B. Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity. J. Magn. Magn. Mater. 2017;442:270–278. doi: 10.1016/j.jmmm.2017.06.089. DOI
Pedram M.Z., Shamloo A., Alasty A., Ghafar-Zadeh E. Optimal magnetic field for crossing super-para-magnetic nanoparticles through the brain blood barrier: A computational approach. Biosensors. 2016;6:25. doi: 10.3390/bios6020025. PubMed DOI PMC
Min K.A., Shin M.C., Yu F., Yang M., David A.E., Yang V.C., Rosania G.R. Pulsed magnetic field improves the transport of iron oxide nanoparticles through cell barriers. ACS Nano. 2013;7:2161–2171. doi: 10.1021/nn3057565. PubMed DOI PMC
Mu Q., Jeon M., Hsiao M.H., Patton V.K., Wang K., Press O.W., Zhang M. Stable and efficient Paclitaxel nanoparticles for targeted glioblastoma therapy. Adv. Healthc. Mater. 2015;4:1236–1245. doi: 10.1002/adhm.201500034. PubMed DOI PMC
Almstatter I., Mykhaylyk O., Settles M., Altomonte J., Aichler M., Walch A., Rummeny E.J., Ebert O., Plank C., Braren R. Characterization of magnetic viral complexes for targeted delivery in oncology. Theranostics. 2015;5:667–685. doi: 10.7150/thno.10438. PubMed DOI PMC
Prosen L., Hudoklin S., Cemazar M., Stimac M., Lampreht Tratar U., Ota M., Scancar J., Romih R., Sersa G. Magnetic field contributes to the cellular uptake for effective therapy with magnetofection using plasmid DNA encoding against Mcam in B16F10 melanoma in vivo. Nanomedicine. 2016;11:627–641. doi: 10.2217/nnm.16.4. PubMed DOI
Prijic S., Prosen L., Cemazar M., Scancar J., Romih R., Lavrencak J., Bregar V.B., Coer A., Krzan M., Znidarsic A., et al. Surface modified magnetic nanoparticles for immuno-gene therapy of murine mammary adenocarcinoma. Biomaterials. 2012;33:4379–4391. doi: 10.1016/j.biomaterials.2012.02.061. PubMed DOI
Yanai A., Hafeli U.O., Metcalfe A.L., Soema P., Addo L., Gregory-Evans C.Y., Po K., Shan X.H., Moritz O.L., Gregory-Evans K. Focused magnetic stem cell targeting to the retina using superparamagnetic iron oxide nanoparticles. Cell Transplant. 2012;21:1137–1148. doi: 10.3727/096368911X627435. PubMed DOI
Patel S.V., Bachman L.A., Hann C.R., Bahler C.K., Fautsch M.P. Human corneal endothelial cell transplantation in a human ex vivo model. Investig. Ophthalmol. Vis. Sci. 2009;50:2123–2131. doi: 10.1167/iovs.08-2653. PubMed DOI PMC
Mimura T., Shimomura N., Usui T., Noda Y., Kaji Y., Yamgami S., Amano S., Miyata K., Araie M. Magnetic attraction of iron-endocytosed corneal endothelial cells to Descemet’s membrane. Exp. Eye Res. 2003;76:745–751. doi: 10.1016/S0014-4835(03)00057-5. PubMed DOI
Kemp S.J., Ferguson R.M., Khandhar A.P., Krishnan K.M. Monodisperse magnetite nanoparticles with nearly ideal saturation magnetization. RSC Adv. 2016;6:77452–77464. doi: 10.1039/C6RA12072E. DOI
Kuhn S.J., Hallahan D.E., Giorgio T.D. Characterization of superparamagnetic nanoparticle interactions with extracellular matrix in an in vitro system. Ann. Biomed. Eng. 2006;34:51–58. doi: 10.1007/s10439-005-9004-5. PubMed DOI
Monzel C., Vicario C., Piehler J., Coppey M., Dahan M. Magnetic control of cellular processes using biofunctional nanoparticles. Chem. Sci. 2017;8:7330–7338. doi: 10.1039/C7SC01462G. PubMed DOI PMC
Meloty-Kapella L., Shergill B., Kuon J., Botvinick E., Weinmaster G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev. Cell. 2012;22:1299–1312. doi: 10.1016/j.devcel.2012.04.005. PubMed DOI PMC
Gordon W.R., Zimmerman B., He L., Miles L.J., Huang J., Tiyanont K., McArthur D.G., Aster J.C., Perrimon N., Loparo J.J., et al. Mechanical allostery: Evidence for a force requirement in the proteolytic activation of Notch. Dev. Cell. 2015;33:729–736. doi: 10.1016/j.devcel.2015.05.004. PubMed DOI PMC
Ke P.C., Lin S., Parak W.J., Davis T.P., Caruso F. A decade of the protein corona. ACS Nano. 2017;11:11773–11776. doi: 10.1021/acsnano.7b08008. PubMed DOI
Vilanova O., Mittag J.J., Kelly P.M., Milani S., Dawson K.A., Radler J.O., Franzese G. Understanding the kinetics of protein-nanoparticle corona formation. ACS Nano. 2016;10:10842–10850. doi: 10.1021/acsnano.6b04858. PubMed DOI PMC
Lunova M., Prokhorov A., Jirsa M., Hof M., Olzynska A., Jurkiewicz P., Kubinova S., Lunov O., Dejneka A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep. 2017;7:16049. doi: 10.1038/s41598-017-16447-6. PubMed DOI PMC
Moore T.L., Rodriguez-Lorenzo L., Hirsch V., Balog S., Urban D., Jud C., Rothen-Rutishauser B., Lattuada M., Petri-Fink A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015;44:6287–6305. doi: 10.1039/C4CS00487F. PubMed DOI
Zablotskii V., Lunov O., Dejneka A., Jastrabik L., Polyakova T., Syrovets T., Simmet T. Nanomechanics of magnetically driven cellular endocytosis. Appl. Phys. Lett. 2011;99:183701. doi: 10.1063/1.3656020. DOI
Kuznetsov A.A. Force acting on a cluster of magnetic nanoparticles in a gradient field: A Langevin dynamics study. J. Magn. Magn. Mater. 2019;475:415–420. doi: 10.1016/j.jmmm.2018.11.093. DOI
Kolosnjaj-Tabi J., Wilhelm C., Clement O., Gazeau F. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation. J. Nanobiotechnol. 2013;11(Suppl. 1):S7. doi: 10.1186/1477-3155-11-S1-S7. PubMed DOI PMC
Uzhytchak M., Lynnyk A., Zablotskii V., Dempsey N.M., Dias A.L., Bonfim M., Lunova M., Jirsa M., Kubinova S., Lunov O., et al. The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells. Appl. Phys. Lett. 2017;111:243703. doi: 10.1063/1.5007797. DOI
Seo D., Southard K.M., Kim J.W., Lee H.J., Farlow J., Lee J.U., Litt D.B., Haas T., Alivisatos A.P., Cheon J., et al. A mechanogenetic toolkit for interrogating cell signaling in space and time. Cell. 2016;165:1507–1518. doi: 10.1016/j.cell.2016.04.045. PubMed DOI PMC
Tajik A., Zhang Y., Wei F., Sun J., Jia Q., Zhou W., Singh R., Khanna N., Belmont A.S., Wang N. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 2016;15:1287–1296. doi: 10.1038/nmat4729. PubMed DOI PMC
Rotherham M., El Haj A.J. Remote activation of the Wnt/beta-catenin signalling pathway using functionalised magnetic particles. PLoS ONE. 2015;10:e0121761. doi: 10.1371/journal.pone.0121761. PubMed DOI PMC
Tseng P., Judy J.W., Di Carlo D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods. 2012;9:1113–1119. doi: 10.1038/nmeth.2210. PubMed DOI PMC
Lee J.H., Kim J.W., Levy M., Kao A., Noh S.H., Bozovic D., Cheon J. Magnetic nanoparticles for ultrafast mechanical control of inner ear hair cells. ACS Nano. 2014;8:6590–6598. doi: 10.1021/nn5020616. PubMed DOI
Desprat N., Supatto W., Pouille P.A., Beaurepaire E., Farge E. Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell. 2008;15:470–477. doi: 10.1016/j.devcel.2008.07.009. PubMed DOI
Etoc F., Lisse D., Bellaiche Y., Piehler J., Coppey M., Dahan M. Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells. Nat. Nanotechnol. 2013;8:193–198. doi: 10.1038/nnano.2013.23. PubMed DOI
Kim D.H., Rozhkova E.A., Ulasov I.V., Bader S.D., Rajh T., Lesniak M.S., Novosad V. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 2010;9:165–171. doi: 10.1038/nmat2591. PubMed DOI PMC
Arias L.S., Pessan J.P., Vieira A.P.M., Lima T.M.T., Delbem A.C.B., Monteiro D.R. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity. Antibiotics. 2018;7:46. doi: 10.3390/antibiotics7020046. PubMed DOI PMC
Gao J., Gu H., Xu B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009;42:1097–1107. doi: 10.1021/ar9000026. PubMed DOI
Pickard M.R., Adams C.F., Barraud P., Chari D.M. Using magnetic nanoparticles for gene transfer to neural stem cells: Stem cell propagation method influences outcomes. J. Funct. Biomater. 2015;6:259–276. doi: 10.3390/jfb6020259. PubMed DOI PMC
Stanley S.A., Sauer J., Kane R.S., Dordick J.S., Friedman J.M. Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat. Med. 2015;21:92–98. doi: 10.1038/nm.3730. PubMed DOI PMC
Wheeler M.A., Smith C.J., Ottolini M., Barker B.S., Purohit A.M., Grippo R.M., Gaykema R.P., Spano A.J., Beenhakker M.P., Kucenas S., et al. Genetically targeted magnetic control of the nervous system. Nat. Neurosci. 2016;19:756–761. doi: 10.1038/nn.4265. PubMed DOI PMC
Piddock L.J.V. The crisis of no new antibiotics-what is the way forward? Lancet Infect. Dis. 2012;12:249–253. doi: 10.1016/S1473-3099(11)70316-4. PubMed DOI
Brown E.D., Wright G.D. Antibacterial drug discovery in the resistance era. Nature. 2016;529:336–343. doi: 10.1038/nature17042. PubMed DOI
Brown D. Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void? Nat. Rev. Drug Discov. 2015;14:821–832. doi: 10.1038/nrd4675. PubMed DOI
Minden-Birkenmaier B.A., Bowlin G.L. Honey-based templates in wound healing and tissue engineering. Bioengineering. 2018;5:46. doi: 10.3390/bioengineering5020046. PubMed DOI PMC
Martinotti S., Ranzato E. Honey, wound repair and regenerative medicine. J. Funct. Biomater. 2018;9:34. doi: 10.3390/jfb9020034. PubMed DOI PMC
Rau J.V., Fosca M., Graziani V., Egorov A.A., Zobkov Y.V., Fedotov A.Y., Ortenzi M., Caminiti R., Baranchikov A.E., Komlev V.S. Silver-doped calcium phosphate bone cements with antibacterial properties. J. Funct. Biomater. 2016;7:10. doi: 10.3390/jfb7020010. PubMed DOI PMC
Casey A.L., Adams D., Karpanen T.J., Lambert P.A., Cookson B.D., Nightingale P., Miruszenko L., Shillam R., Christian P., Elliott T.S. Role of copper in reducing hospital environment contamination. J. Hosp. Infect. 2010;74:72–77. doi: 10.1016/j.jhin.2009.08.018. PubMed DOI
Hartemann P., Hoet P., Proykova A., Fernandes T., Baun A., De Jong W., Filser J., Hensten A., Kneuer C., Maillard J.Y., et al. Nanosilver: Safety, health and environmental effects and role in antimicrobial resistance. Mater. Today. 2015;18:122–123. doi: 10.1016/j.mattod.2015.02.014. DOI
Zhang S.H., Ye C.S., Lin H.R., Lv L., Yu X. UV disinfection induces a Vbnc state in Escherichia coli and Pseudomonas aeruginosa. Environ. Sci. Technol. 2015;49:1721–1728. doi: 10.1021/es505211e. PubMed DOI
Pokhrel P.R., Bermudez-Aguirre D., Martinez-Flores H.E., Garnica-Romo M.G., Sablani S., Tang J., Barbosa-Canovas G.V. Combined effect of ultrasound and mild temperatures on the inactivation of E. coli in fresh carrot juice and changes on its physicochemical characteristics. J. Food Sci. 2017;82:2343–2350. doi: 10.1111/1750-3841.13787. PubMed DOI
Evelyn, Silva F.V.M. Resistance of Byssochlamys nivea and Neosartorya fischeri mould spores of different age to high pressure thermal processing and thermosonication. J. Food Eng. 2017;201:9–16. doi: 10.1016/j.jfoodeng.2017.01.007. DOI
Gupta T.T., Karki S.B., Matson J.S., Gehling D.J., Ayan H. Sterilization of biofilm on a titanium surface using a combination of nonthermal plasma and chlorhexidine digluconate. BioMed Res. Int. 2017;2017:6085741. doi: 10.1155/2017/6085741. PubMed DOI PMC
Rossi F., Kylian O., Rauscher H., Hasiwa M., Gilliland D. Low pressure plasma discharges for the sterilization and decontamination of surfaces. New J. Phys. 2009;11:115017. doi: 10.1088/1367-2630/11/11/115017. DOI
Gilmore B.F., Flynn P.B., O’Brien S., Hickok N., Freeman T., Bourke P. Cold plasmas for biofilm control: Opportunities and challenges. Trends Biotechnol. 2018;36:627–638. doi: 10.1016/j.tibtech.2018.03.007. PubMed DOI
Scholtz V., Pazlarova J., Souskova H., Khun J., Julak J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015;33:1108–1119. doi: 10.1016/j.biotechadv.2015.01.002. PubMed DOI
De Geyter N., Morent R. Nonthermal plasma sterilization of living and nonliving surfaces. Annu. Rev. Biomed. Eng. 2012;14:255–274. doi: 10.1146/annurev-bioeng-071811-150110. PubMed DOI
Sarangapani C., Patange A., Bourke P., Keener K., Cullen P.J. Recent advances in the application of cold plasma technology in foods. Annu. Rev. Food Sci. Technol. 2018;9:609–629. doi: 10.1146/annurev-food-030117-012517. PubMed DOI
Lu X., Naidis G.V., Laroussi M., Reuter S., Graves D.B., Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. Rev. Sec. Phys. Lett. 2016;630:1–84. doi: 10.1016/j.physrep.2016.03.003. DOI
Laroussi M. Sterilization of contaminated matter with an atmospheric pressure plasma. IEEE Trans. Plasma Sci. 1996;24:1188–1191. doi: 10.1109/27.533129. DOI
Sung S.J., Huh J.B., Yun M.J., Chang B.M., Jeong C.M., Jeon Y.C. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments. J. Adv. Prosthodont. 2013;5:2–8. doi: 10.4047/jap.2013.5.1.2. PubMed DOI PMC
Kubinova S., Zaviskova K., Uherkova L., Zablotskii V., Churpita O., Lunov O., Dejneka A. Non-thermal air plasma promotes the healing of acute skin wounds in rats. Sci. Rep. 2017;7:45183. doi: 10.1038/srep45183. PubMed DOI PMC
Chatraie M., Torkaman G., Khani M., Salehi H., Shokri B. In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment. Sci. Rep. 2018;8:5621. doi: 10.1038/s41598-018-24049-z. PubMed DOI PMC
Rupf S., Lehmann A., Hannig M., Schafer B., Schubert A., Feldmann U., Schindler A. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J. Med. Microbiol. 2010;59:206–212. doi: 10.1099/jmm.0.013714-0. PubMed DOI
Kalghatgi S.U., Fridman G., Cooper M., Nagaraj G., Peddinghaus M., Balasubramanian M., Vasilets V.N., Gutsol A.F., Fridman A., Friedman G. Mechanism of blood coagulation by nonthermal atmospheric pressure dielectric barrier discharge plasma. IEEE Trans. Plasma Sci. 2007;35:1559–1566. doi: 10.1109/TPS.2007.905953. DOI
Keidar M., Yan D., Beilis I.I., Trink B., Sherman J.H. Plasmas for treating cancer: Opportunities for adaptive and self-adaptive approaches. Trends Biotechnol. 2018;36:586–593. doi: 10.1016/j.tibtech.2017.06.013. PubMed DOI
Kong M.G., Kroesen G., Morfill G., Nosenko T., Shimizu T., van Dijk J., Zimmermann J.L. Plasma medicine: An introductory review. New J. Phys. 2009;11:115012. doi: 10.1088/1367-2630/11/11/115012. DOI
Fridman G., Peddinghaus M., Ayan H., Fridman A., Balasubramanian M., Gutsol A., Brooks A., Friedman G. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem. Plasma Process. 2006;26:425–442. doi: 10.1007/s11090-006-9024-4. DOI
Dobrynin D., Fridman G., Friedman G., Fridman A. Physical and biological mechanisms of direct plasma interaction with living tissue. New J. Phys. 2009;11:115020. doi: 10.1088/1367-2630/11/11/115020. DOI
Brun P., Bernabe G., Marchiori C., Scarpa M., Zuin M., Cavazzana R., Zaniol B., Martines E. Antibacterial efficacy and mechanisms of action of low power atmospheric pressure cold plasma: Membrane permeability, biofilm penetration and antimicrobial sensitization. J. Appl. Microbiol. 2018;125:398–408. doi: 10.1111/jam.13780. PubMed DOI
Joshi S.G., Paff M., Friedman G., Fridman G., Fridman A., Brooks A.D. Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of nonthermal dielectric-barrier discharge plasma. Am. J. Infect. Control. 2010;38:293–301. doi: 10.1016/j.ajic.2009.11.002. PubMed DOI
Maisch T., Shimizu T., Li Y.F., Heinlin J., Karrer S., Morfill G., Zimmermann J.L. Decolonisation of MRSA, S-aureus and E-coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE. 2012;7:e34610. doi: 10.1371/journal.pone.0034610. PubMed DOI PMC
Klampfl T.G., Isbary G., Shimizu T., Li Y.F., Zimmermann J.L., Stolz W., Schlegel J., Morfill G.E., Schmidt H.U. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl. Environ. Microb. 2012;78:5077–5082. doi: 10.1128/AEM.00583-12. PubMed DOI PMC
Guo J., Li Z., Huang K., Li Y., Wang J. Morphology analysis of Escherichia coli treated with nonthermal plasma. J. Appl. Microbiol. 2017;122:87–96. doi: 10.1111/jam.13335. PubMed DOI
Lis K.A., Boulaaba A., Binder S., Li Y.F., Kehrenberg C., Zimmermann J.L., Klein G., Ahlfeld B. Inactivation of Salmonella Typhimurium and Listeria monocytogenes on ham with nonthermal atmospheric pressure plasma. PLoS ONE. 2018;13:e0197773. doi: 10.1371/journal.pone.0197773. PubMed DOI PMC
Lunov O., Churpita O., Zablotskii V., Deyneka I.G., Meshkovskii I.K., Jager A., Sykova E., Kubinova S., Dejneka A. Non-thermal plasma mills bacteria: Scanning electron microscopy observations. Appl. Phys. Lett. 2015;106:053703. doi: 10.1063/1.4907624. DOI
Ben Belgacem Z., Carre G., Charpentier E., Le-Bras F., Maho T., Robert E., Pouvesle J.M., Polidor F., Gangloff S.C., Boudifa M., et al. Innovative non-thermal plasma disinfection process inside sealed bags: Assessment of bactericidal and sporicidal effectiveness in regard to current sterilization norms. PLoS ONE. 2017;12:e0180183. doi: 10.1371/journal.pone.0180183. PubMed DOI PMC
Lunov O., Zablotskii V., Churpita O., Jager A., Polivka L., Sykova E., Dejneka A., Kubinova S. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials. 2016;82:71–83. doi: 10.1016/j.biomaterials.2015.12.027. PubMed DOI
Han L., Patil S., Boehm D., Milosavljevic V., Cullen P.J., Bourke P. Mechanisms of inactivation by high-voltage atmospheric cold plasma differ for Escherichia coli and Staphylococcus aureus. Appl. Environ. Microb. 2016;82:450–458. doi: 10.1128/AEM.02660-15. PubMed DOI PMC
Kvam E., Davis B., Mondello F., Garner A.L. Nonthermal atmospheric plasma rapidly disinfects multidrug-resistant microbes by inducing cell surface damage. Antimicrob. Agents Chemother. 2012;56:2028–2036. doi: 10.1128/AAC.05642-11. PubMed DOI PMC
Shaw P., Kumar N., Kwak H.S., Park J.H., Uhm H.S., Bogaerts A., Choi E.H., Attri P. Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci. Rep. 2018;8:11268. doi: 10.1038/s41598-018-29549-6. PubMed DOI PMC
Panngom K., Lee S.H., Park D.H., Sim G.B., Kim Y.H., Uhm H.S., Park G., Choi E.H. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host. PLoS ONE. 2014;9:e99300. doi: 10.1371/journal.pone.0099300. PubMed DOI PMC
Ziuzina D., Boehm D., Patil S., Cullen P.J., Bourke P. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS ONE. 2015;10:e0138209. doi: 10.1371/journal.pone.0138209. PubMed DOI PMC
Han L., Patil S., Keener K.M., Cullen P.J., Bourke P. Bacterial inactivation by high-voltage atmospheric cold plasma: Influence of process parameters and effects on cell leakage and DNA. J. Appl. Microbiol. 2014;116:784–794. PubMed
Sinha R.P., Hader D.P. UV-induced DNA damage and repair: A review. Photochem. Photobiol. Sci. 2002;1:225–236. doi: 10.1039/b201230h. PubMed DOI
Moreau S., Moisan M., Tabrizian M., Barbeau J., Pelletier J., Ricard A., Yahia L.H. Using the flowing afterglow of a plasma to inactivate Bacillus subtilis spores: Influence of the operating conditions. J. Appl. Phys. 2000;88:1166–1174. doi: 10.1063/1.373792. DOI
Kostov K.G., Rocha V., Koga-Ito C.Y., Matos B.M., Algatti M.A., Honda R.Y., Kayama M.E., Mota R.P. Bacterial sterilization by a dielectric barrier discharge (DBD) in air. Surf. Coat. Technol. 2010;204:2954–2959. doi: 10.1016/j.surfcoat.2010.01.052. DOI
Birmingham J.G. Mechanisms of bacterial spore deactivation using ambient pressure nonthermal discharges. IEEE Trans. Plasma Sci. 2004;32:1526–1531. doi: 10.1109/TPS.2004.832609. DOI
Park B.J., Lee D.H., Park J.C., Lee I.S., Lee K.Y., Hyun S.O., Chun M.S., Chung K.H. Sterilization using a microwave-induced argon plasma system at atmospheric pressure. Phys. Plasmas. 2003;10:4539–4544. doi: 10.1063/1.1613655. DOI
Lee K.Y., Park B.J., Lee D.H., Lee I.S., Hyun S.O., Chung K.H., Park J.C. Sterilization of Escherichia coli and MRSA using microwave-induced argon plasma at atmospheric pressure. Surf. Coat. Technol. 2005;193:35–38. doi: 10.1016/j.surfcoat.2004.07.034. DOI
Lunov O., Zablotskii V., Churpita O., Lunova M., Jirsa M., Dejneka A., Kubinova S. Chemically different non-thermal plasmas target distinct cell death pathways. Sci. Rep. 2017;7:600. doi: 10.1038/s41598-017-00689-5. PubMed DOI PMC
Lunov O., Zablotskii V., Churpita O., Jaeger A., Polivka L., Sykova E., Terebova N., Kulikov A., Kubinova S., Dejneka A. Towards the understanding of non-thermal air plasma action: Effects on bacteria and fibroblasts. RSC Adv. 2016;6:25286–25292. doi: 10.1039/C6RA02368A. DOI
Rumbach P., Witzke M., Sankaran R.M., Go D.B. Decoupling interfacial reactions between plasmas and liquids: Charge transfer vs plasma neutral reactions. J. Am. Chem. Soc. 2013;135:16264–16267. doi: 10.1021/ja407149y. PubMed DOI
Park J.Y., Park S., Choe W., Yong H.I., Jo C., Kim K. Plasma-functionalized solution: A potent antimicrobial agent for biomedical applications from antibacterial therapeutics to biomaterial surface engineering. ACS Appl. Mater. Interfaces. 2017;9:43470–43477. doi: 10.1021/acsami.7b14276. PubMed DOI
Laroussi M., Leipold F. Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. Int. J. Mass Spectrom. 2004;233:81–86. doi: 10.1016/j.ijms.2003.11.016. DOI
Laroussi M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: Review, analysis, and prospects. IEEE Trans. Plasma Sci. 2002;30:1409–1415. doi: 10.1109/TPS.2002.804220. DOI
Liao X.Y., Li J., Suo Y.J., Ahn J., Liu D.H., Chen S.G., Hu Y.Q., Ye X.Q., Ding T. Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge. Food Res. Int. 2018;105:178–183. doi: 10.1016/j.foodres.2017.11.010. PubMed DOI
Cui H.Y., Ma C.X., Lin L. Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce. Food Control. 2016;66:8–16. doi: 10.1016/j.foodcont.2016.01.035. DOI
Fridman G., Brooks A.D., Balasubramanian M., Fridman A., Gutsol A., Vasilets V.N., Ayan H., Friedman G. Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process. Polym. 2007;4:370–375. doi: 10.1002/ppap.200600217. DOI
Stoffels E., Sakiyama Y., Graves D.B. Cold atmospheric plasma: Charged species and their interactions with cells and tissues. IEEE Trans. Plasma Sci. 2008;36:1441–1457. doi: 10.1109/TPS.2008.2001084. DOI
Roy S., Khanna S., Nallu K., Hunt T.K., Sen C.K. Dermal wound healing is subject to redox control. Mol. Ther. 2006;13:211–220. doi: 10.1016/j.ymthe.2005.07.684. PubMed DOI PMC
Mittler R., Vanderauwera S., Suzuki N., Miller G., Tognetti V.B., Vandepoele K., Gollery M., Shulaev V., Van Breusegem F. ROS signaling: The new wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI
Alkawareek M.Y., Gorman S.P., Graham W.G., Gilmore B.F. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int. J. Antimicrob. Agents. 2014;43:154–160. doi: 10.1016/j.ijantimicag.2013.08.022. PubMed DOI
Yusupov M., Bogaerts A., Huygh S., Snoeckx R., van Duin A.C.T., Neyts E.C. Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. J. Phys. Chem. C. 2013;117:5993–5998. doi: 10.1021/jp3128516. DOI
Beveridge T.J. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999;181:4725–4733. PubMed PMC
Malanovic N., Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim. Biophys. Acta. 2016;1858:936–946. doi: 10.1016/j.bbamem.2015.11.004. PubMed DOI
Auer G.K., Weibel D.B. Bacterial cell mechanics. Biochemistry. 2017;56:3710–3724. doi: 10.1021/acs.biochem.7b00346. PubMed DOI PMC
Panieri E., Gogvadze V., Norberg E., Venkatesh R., Orrenius S., Zhivotovsky B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic. Biol. Med. 2013;57:176–187. doi: 10.1016/j.freeradbiomed.2012.12.024. PubMed DOI
Bayles K.W. Bacterial programmed cell death: Making sense of a paradox. Nat. Rev. Microbiol. 2014;12:63–69. doi: 10.1038/nrmicro3136. PubMed DOI PMC
Dwyer D.J., Camacho D.M., Kohanski M.A., Callura J.M., Collins J.J. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol. Cell. 2012;46:561–572. doi: 10.1016/j.molcel.2012.04.027. PubMed DOI PMC
Li L.M., Zhang H., Huang Q. New insight into the residual inactivation of Microcystis aeruginosa by dielectric barrier discharge. Sci. Rep. 2015;5:13683. doi: 10.1038/srep13683. PubMed DOI PMC
Won H.R., Kang S.U., Kim H.J., Jang J.Y., Shin Y.S., Kim C.H. Non-thermal plasma treated solution with potential as a novel therapeutic agent for nasal mucosa regeneration. Sci. Rep. 2018;8:13754. doi: 10.1038/s41598-018-32077-y. PubMed DOI PMC
Babaeva N.Y., Naidis G.V. Modeling of plasmas for biomedicine. Trends Biotechnol. 2018;36:603–614. doi: 10.1016/j.tibtech.2017.06.017. PubMed DOI
Choi J.S., Kim J., Hong Y.J., Bae W.Y., Choi E.H., Jeong J.W., Park H.K. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomed. Opt. Express. 2017;8:2649–2659. doi: 10.1364/BOE.8.002649. PubMed DOI PMC
Pai K., Timmons C., Roehm K.D., Ngo A., Narayanan S.S., Ramachandran A., Jacob J.D., Ma L.M., Madihally S.V. Investigation of the roles of plasma species generated by surface dielectric barrier discharge. Sci. Rep. 2018;8:16674. doi: 10.1038/s41598-018-35166-0. PubMed DOI PMC
Kang S.U., Cho J.H., Chang J.W., Shin Y.S., Kim K.I., Park J.K., Yang S.S., Lee J.S., Moon E., Lee K., et al. Nonthermal plasma induces head and neck cancer cell death: The potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis. 2014;5:e1056. doi: 10.1038/cddis.2014.33. PubMed DOI PMC
Daeschlein G., Napp M., Lutze S., Arnold A., von Podewils S., Guembel D., Junger M. Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. J. Dtsch. Dermatol. Ges. 2015;13:143–150. doi: 10.1111/ddg.12559. PubMed DOI
Ulrich C., Kluschke F., Patzelt A., Vandersee S., Czaika V.A., Richter H., Bob A., von Hutten J., Painsi C., Hugel R., et al. Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: A pilot study. J. Wound Care. 2015;24:196–203. doi: 10.12968/jowc.2015.24.5.196. PubMed DOI
Li Y.L., Pan J., Ye G.P., Zhang Q., Wang J., Zhang J., Fang J. In vitro studies of the antimicrobial effect of non-thermal plasma-activated water as a novel mouthwash. Eur. J. Oral Sci. 2017;125:463–470. doi: 10.1111/eos.12374. PubMed DOI
Van Boxem W., Van der Paal J., Gorbanev Y., Vanuytsel S., Smits E., Dewilde S., Bogaerts A. Anti-cancer capacity of plasma-treated PBS: Effect of chemical composition on cancer cell cytotoxicity. Sci. Rep. 2017;7:16478. doi: 10.1038/s41598-017-16758-8. PubMed DOI PMC
Yun S.H., Kwok S.J.J. Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 2017;1:0008. doi: 10.1038/s41551-016-0008. PubMed DOI PMC
Anderson R.R. Lasers for dermatology and skin biology. J. Investig. Dermatol. 2013;133:E21–E23. doi: 10.1038/skinbio.2013.181. PubMed DOI
Shirasu N., Nam S.O., Kuroki M. Tumor-targeted photodynamic therapy. Anticancer Res. 2013;33:2823–2831. PubMed
Chung H., Dai T., Sharma S.K., Huang Y.Y., Carroll J.D., Hamblin M.R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012;40:516–533. doi: 10.1007/s10439-011-0454-7. PubMed DOI PMC
Stern R.S. Psoralen and ultraviolet a light therapy for psoriasis. N. Engl. J. Med. 2007;357:682–690. doi: 10.1056/NEJMct072317. PubMed DOI
Farjo A.A., Sugar A., Schallhorn S.C., Majmudar P.A., Tanzer D.J., Trattler W.B., Cason J.B., Donaldson K.E., Kymionis G.D. Femtosecond lasers for LASIK flap creation: A report by the American Academy of Ophthalmology. Ophthalmology. 2013;120:e5–e20. doi: 10.1016/j.ophtha.2012.08.013. PubMed DOI
Chow R.T., Johnson M.I., Lopes-Martins R.A., Bjordal J.M. Efficacy of low-level laser therapy in the management of neck pain: A systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009;374:1897–1908. doi: 10.1016/S0140-6736(09)61522-1. PubMed DOI
Yang D., Yi W., Wang E., Wang M. Effects of light-emitting diode irradiation on the osteogenesis of human umbilical cord mesenchymal stem cells in vitro. Sci. Rep. 2016;6:37370. doi: 10.1038/srep37370. PubMed DOI PMC
Ong W.K., Chen H.F., Tsai C.T., Fu Y.J., Wong Y.S., Yen D.J., Chang T.H., Huang H.D., Lee O.K., Chien S., et al. The activation of directional stem cell motility by green light-emitting diode irradiation. Biomaterials. 2013;34:1911–1920. doi: 10.1016/j.biomaterials.2012.11.065. PubMed DOI
Wu S., Xing D., Gao X., Chen W.R. High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species. J. Cell. Physiol. 2009;218:603–611. doi: 10.1002/jcp.21636. PubMed DOI
Khan I., Tang E., Arany P. Molecular pathway of near-infrared laser phototoxicity involves ATF-4 orchestrated ER stress. Sci. Rep. 2015;5:10581. doi: 10.1038/srep10581. PubMed DOI PMC
Lynnyk A., Lunova M., Jirsa M., Egorova D., Kulikov A., Kubinova S., Lunov O., Dejneka A. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation. Biomed. Opt. Express. 2018;9:1283–1300. doi: 10.1364/BOE.9.001283. PubMed DOI PMC
Whelan H.T., Buchmann E.V., Dhokalia A., Kane M.P., Whelan N.T., Wong-Riley M.T., Eells J.T., Gould L.J., Hammamieh R., Das R., et al. Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J. Clin. Laser Med. Surg. 2003;21:67–74. doi: 10.1089/104454703765035484. PubMed DOI
Arany P.R., Cho A., Hunt T.D., Sidhu G., Shin K., Hahm E., Huang G.X., Weaver J., Chen A.C., Padwa B.L., et al. Photoactivation of endogenous latent transforming growth factor-beta1 directs dental stem cell differentiation for regeneration. Sci. Transl. Med. 2014;6:238ra69. doi: 10.1126/scitranslmed.3008234. PubMed DOI PMC
Eells J.T., Henry M.M., Summerfelt P., Wong-Riley M.T., Buchmann E.V., Kane M., Whelan N.T., Whelan H.T. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc. Natl. Acad. Sci. USA. 2003;100:3439–3444. doi: 10.1073/pnas.0534746100. PubMed DOI PMC
Brosseau L., Robinson V., Wells G., Debie R., Gam A., Harman K., Morin M., Shea B., Tugwell P. Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst. Rev. 2005;4:CD002049. doi: 10.1002/14651858.CD002049.pub2. PubMed DOI PMC
Huang Z., Ma J., Chen J., Shen B., Pei F., Kraus V.B. The effectiveness of low-level laser therapy for nonspecific chronic low back pain: A systematic review and meta-analysis. Arthritis Res. Ther. 2015;17:360. doi: 10.1186/s13075-015-0882-0. PubMed DOI PMC
Yousefi-Nooraie R., Schonstein E., Heidari K., Rashidian A., Pennick V., Akbari-Kamrani M., Irani S., Shakiba B., Mortaz Hejri S.A., Mortaz Hejri S.O., et al. Low level laser therapy for nonspecific low-back pain. Cochrane Database Syst. Rev. 2008;2:CD005107. doi: 10.1002/14651858.CD005107.pub4. PubMed DOI PMC
Tchanque-Fossuo C.N., Ho D., Dahle S.E., Koo E., Li C.S., Isseroff R.R., Jagdeo J. A systematic review of low-level light therapy for treatment of diabetic foot ulcer. Wound Repair Regen. 2016;24:418–426. doi: 10.1111/wrr.12399. PubMed DOI
Li S., Wang C., Wang B., Liu L., Tang L., Liu D., Yang G., Zhang L. Efficacy of low-level light therapy for treatment of diabetic foot ulcer: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2018;143:215–224. doi: 10.1016/j.diabres.2018.07.014. PubMed DOI
Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B. 1999;49:1–17. doi: 10.1016/S1011-1344(98)00219-X. PubMed DOI
Chen A.C., Arany P.R., Huang Y.Y., Tomkinson E.M., Sharma S.K., Kharkwal G.B., Saleem T., Mooney D., Yull F.E., Blackwell T.S., et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS ONE. 2011;6:e22453. doi: 10.1371/journal.pone.0022453. PubMed DOI PMC
El Sayed S.O., Dyson M. Effect of laser pulse repetition rate and pulse duration on mast cell number and degranulation. Lasers Surg. Med. 1996;19:433–437. doi: 10.1002/(SICI)1096-9101(1996)19:4<433::AID-LSM8>3.0.CO;2-T. PubMed DOI
Walsh L.J., Trinchieri G., Waldorf H.A., Whitaker D., Murphy G.F. Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc. Natl. Acad. Sci. USA. 1991;88:4220–4224. doi: 10.1073/pnas.88.10.4220. PubMed DOI PMC
Hawkins D., Abrahamse H. Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed. Laser Surg. 2005;23:251–259. doi: 10.1089/pho.2005.23.251. PubMed DOI
Medrado A.R.A.P., Pugliese L.S., Reis S.R.A., Andrade Z.A. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Laser Surg. Med. 2003;32:239–244. doi: 10.1002/lsm.10126. PubMed DOI
Passarella S., Casamassima E., Molinari S., Pastore D., Quagliariello E., Catalano I.M., Cingolani A. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser. FEBS Lett. 1984;175:95–99. doi: 10.1016/0014-5793(84)80577-3. PubMed DOI
Sazanov L.A. A giant molecular proton pump: Structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell Biol. 2015;16:375–388. doi: 10.1038/nrm3997. PubMed DOI
Karu T., Pyatibrat L., Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J. Photochem. Photobiol. B. 1995;27:219–223. doi: 10.1016/1011-1344(94)07078-3. PubMed DOI
Pastore D., Greco M., Petragallo V.A., Passarella S. Increase in <--H+/e- ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser. Biochem. Mol. Biol. Int. 1994;34:817–826. PubMed
Posten W., Wrone D.A., Dover J.S., Arndt K.A., Silapunt S., Alam M. Low-level laser therapy for wound healing: Mechanism and efficacy. Dermatol. Surg. 2005;31:334–340. doi: 10.1097/00042728-200503000-00016. PubMed DOI
Wang F., Chen T.S., Xing D., Wang J.J., Wu Y.X. Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Laser Surg. Med. 2005;36:2–7. doi: 10.1002/lsm.20130. PubMed DOI
Waldchen S., Lehmann J., Klein T., van de Linde S., Sauer M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 2015;5:15348. doi: 10.1038/srep15348. PubMed DOI PMC
Carlton P.M., Boulanger J., Kervrann C., Sibarita J.B., Salamero J., Gordon-Messer S., Bressan D., Haber J.E., Haase S., Shao L., et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl. Acad. Sci. USA. 2010;107:16016–16022. doi: 10.1073/pnas.1004037107. PubMed DOI PMC
Naeser M.A., Zafonte R., Krengel M.H., Martin P.I., Frazier J., Hamblin M.R., Knight J.A., Meehan W.P., 3rd, Baker E.H. Significant improvements in cognitive performance post-transcranial, red/near-infrared light-emitting diode treatments in chronic, mild traumatic brain injury: Open-protocol study. J. Neurotrauma. 2014;31:1008–1017. doi: 10.1089/neu.2013.3244. PubMed DOI PMC
Huang Y.Y., Chen A.C., Carroll J.D., Hamblin M.R. Biphasic dose response in low level light therapy. Dose-Response. 2009;7:358–383. doi: 10.2203/dose-response.09-027.Hamblin. PubMed DOI PMC
Huang Y.Y., Sharma S.K., Carroll J., Hamblin M.R. Biphasic dose response in low level light therapy—An update. Dose-Response. 2011;9:602–618. doi: 10.2203/dose-response.11-009.Hamblin. PubMed DOI PMC
Almeida J.L., Cole K.D., Plant A.L. Standards for cell line authentication and beyond. PLoS Biol. 2016;14:e1002476. doi: 10.1371/journal.pbio.1002476. PubMed DOI PMC
Ehrenstein M.R., Mauri C. If the treatment works, do we need to know why?: The promise of immunotherapy for experimental medicine. J. Exp. Med. 2007;204:2249–2252. doi: 10.1084/jem.20071737. PubMed DOI PMC
Pries V., Nocker C., Khan D., Johnen P., Hong Z., Tripathi A., Keller A.L., Fitz M., Perruccio F., Filipuzzi I., et al. Target identification and mechanism of action of picolinamide and benzamide chemotypes with antifungal properties. Cell Chem. Biol. 2018;25:279–290.e7. doi: 10.1016/j.chembiol.2017.12.007. PubMed DOI PMC
Schenone M., Dancik V., Wagner B.K., Clemons P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013;9:232–240. doi: 10.1038/nchembio.1199. PubMed DOI PMC
Critical Analysis of Non-Thermal Plasma-Driven Modulation of Immune Cells from Clinical Perspective
Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury
Preliminary Study of Ge-DLC Nanocomposite Biomaterials Prepared by Laser Codeposition