Novel immunotargets in multiple myeloma: biological relevance and therapeutic potential

. 2025 Jul 01 ; 13 (1) : 92. [epub] 20250701

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40597436

Grantová podpora
CZ.10.03.01/00/22_003/0000003 LERCO project under Operational Programme Just Transition
CZ.10.03.01/00/22_003/0000003 LERCO project under Operational Programme Just Transition
CZ.10.03.01/00/22_003/0000003 LERCO project under Operational Programme Just Transition
CZ.10.03.01/00/22_003/0000003 LERCO project under Operational Programme Just Transition
SGS03/LF/2024 Ostravská Univerzita v Ostravě
SGS03/LF/2024 Ostravská Univerzita v Ostravě
MH CZ- DRO- FNOs/2023 Fakultní nemocnioce Ostrava
MH CZ- DRO- FNOs/2023 Fakultní nemocnioce Ostrava
NU23-03-00374 Agentura Pro Zdravotnický Výzkum České Republiky
CZ.02.01.01/00/22_008/0004644 OP JAK SALVAGE

Odkazy

PubMed 40597436
PubMed Central PMC12220814
DOI 10.1186/s40364-025-00799-7
PII: 10.1186/s40364-025-00799-7
Knihovny.cz E-zdroje

Multiple myeloma is a hematologic malignancy characterized by complex genetic and microenvironmental factors that drive disease progression and resistance to treatment. Despite advancements in therapies targeting established antigens, such as BCMA, CD38, SLAMF7, and GPRC5D, specific challenges persist, including antigen escape, treatment resistance, and off-tumor toxicity, highlighting the urgent need for novel therapeutic modalities. Recent advances in surface proteomics and integrative omics technologies have enabled the discovery of new surface antigens with the potential to address the challenges. By targeting antigens with higher tumor specificity and lower expression in healthy tissues, emerging immunotargets offer new avenues to minimize off-tumor toxicity and reduce the risk of relapse due to antigen loss or immune evasion. This review provides an overview of emerging immunotargets, summarizing their biological functions, roles in disease pathogenesis and immune evasion, and potential for therapeutic interventions. We focused on fifteen emerging targets currently in early clinical development or the preclinical phase, highlighting LILRB4, SEMA4A, ITGB7, CCR1, and CD70 as the most promising. These immunotargets demonstrate significant potential for next-generation immunotherapies, including antibody-drug conjugates, bispecific antibodies, and chimeric antigen receptor (CAR) T-cell therapies. Preclinical or early clinical studies show favorable safety profiles, high tumor specificity, and mechanisms to overcome immune resistance, collectively suggesting the potential for improved patient outcomes and reduced adverse effects. By presenting a comprehensive summary of these advances, this review underscores the translational potential of emerging immunotargets and provides insights to guide the development of innovative therapeutic approaches to improve outcomes for multiple myeloma patients.

Zobrazit více v PubMed

Das S, Juliana N, Yazit NAA, Azmani S, Abu IF. Multiple myeloma: challenges encountered and future options for better treatment. Int J Mol Sci. 2022;23(3):1649. 10.3390/ijms23031649. PubMed PMC

Rajkumar SV. Multiple myeloma: 2024 update on diagnosis, risk-stratification, and management. American J Hematol. 2024;99(9):1802–24. 10.1002/ajh.27422. PubMed PMC

Abdallah N, Kumar SK. New therapies on the horizon for relapsed refractory multiple myeloma. Hematol Oncol Clin North Am. 2024;38(2):511–32. 10.1016/j.hoc.2023.12.013. PubMed

Sheykhhasan M, Ahmadieh-Yazdi A, Vicidomini R, Poondla N, Tanzadehpanah H, Dirbaziyan A, et al. CAR T therapies in multiple myeloma: unleashing the future. Cancer Gene Ther. 2024;31(5):667–86. 10.1038/s41417-024-00750-2. PubMed PMC

Liu J, Xing L, Li J, Wen K, Liu N, Liu Y, et al. Epigenetic regulation of CD38/CD48 by KDM6A mediates NK cell response in multiple myeloma. Nat Commun. 2024;15(1):1367. 10.1038/s41467-024-45561-z. PubMed PMC

Lancman G, Sastow DL, Cho HJ, Jagannath S, Madduri D, Parekh SS, et al. Bispecific antibodies in multiple myeloma: present and future. Blood Cancer Discov. 2021;2(5):423–33. 10.1158/2643-3230.BCD-21-0028. PubMed PMC

Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. Mol Biomed. 2024;5(1):25. 10.1186/s43556-024-00188-w. PubMed PMC

Xu L, Wen C, Xia J, Zhang H, Liang Y, Xu X. Targeted immunotherapy: harnessing the immune system to battle multiple myeloma. Cell Death Discov. 2024;10(1):55. 10.1038/s41420-024-01818-6. PubMed PMC

Mailankody S, Devlin SM, Landa J, Nath K, Diamonte C, Carstens EJ, et al. GPRC5D-targeted CAR T cells for myeloma. N Engl J Med. 2022;387(13):1196–206. 10.1056/NEJMoa2209900. PubMed PMC

Lee H, Ahn S, Maity R, Leblay N, Ziccheddu B, Truger M, et al. Mechanisms of antigen escape from BCMA- or GPRC5D-targeted immunotherapies in multiple myeloma. Nat Med. 2023;29(9):2295–306. 10.1038/s41591-023-02491-5. PubMed PMC

Anderson GSF, Ballester-Beltran J, Giotopoulos G, Guerrero JA, Surget S, Williamson JC, et al. Unbiased cell surface proteomics identifies SEMA4A as an effective immunotherapy target for myeloma. Blood. 2022;139(16):2471–82. 10.1182/blood.2021015161. PubMed PMC

Ferguson ID, Patiño-Escobar B, Tuomivaara ST, Lin Y-HT, Nix MA, Leung KK, et al. The surfaceome of multiple myeloma cells suggests potential immunotherapeutic strategies and protein markers of drug resistance. Nat Commun. 2022;13(1):4121. 10.1038/s41467-022-31810-6. PubMed PMC

Yao L, Wang JT, Jayasinghe RG, O’Neal J, Tsai C-F, Rettig MP, et al. Single-cell discovery and multiomic characterization of therapeutic targets in multiple myeloma. Cancer Res. 2023;83(8):1214–33. 10.1158/0008-5472.CAN-22-1769. PubMed PMC

Di Meo F, Iyer A, Akama K, Cheng R, Yu C, Cesarano A, et al. A target discovery pipeline identified ILT3 as a target for immunotherapy of multiple myeloma. Cell Rep Med. 2023;4(7): 101110. 10.1016/j.xcrm.2023.101110. PubMed PMC

So T. The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int Immunol. 2022;34(1):7–20. 10.1093/intimm/dxab058. PubMed

Bullock TNJ. CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cell Mol Immunol. 2022;19(1):14–22. 10.1038/s41423-021-00734-4. PubMed PMC

Elgueta R, Benson MJ, De Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72. 10.1111/j.1600-065X.2009.00782.x. PubMed PMC

Karnell JL, Rieder SA, Ettinger R, Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev. 2019;141:92–103. 10.1016/j.addr.2018.12.005. PubMed

Tang T, Cheng X, Truong B, Sun L, Yang X, Wang H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther. 2021;219: 107709. 10.1016/j.pharmthera.2020.107709. PubMed PMC

Contin C, Pitard V, Itai T, Nagata S, Moreau J-F, Déchanet-Merville J. Membrane-anchored CD40 is processed by the tumor necrosis factor-alpha-converting enzyme. J Biol Chem. 2003;278(35):32801–9. 10.1074/jbc.M209993200. PubMed

Hussein M, Berenson JR, Niesvizky R, Munshi N, Matous J, Sobecks R, et al. A phase I multidose study of dacetuzumab (SGN-40; humanized anti-CD40 monoclonal antibody) in patients with multiple myeloma. Haematologica. 2010;95(5):845–8. 10.3324/haematol.2009.008003. PubMed PMC

Agura E, Niesvizky R, Matous J, Munshi N, Hussein M, Parameswaran RV, et al. Dacetuzumab (SGN-40), lenalidomide, and weekly dexamethasone in relapsed or refractory multiple myeloma: multiple responses observed in a phase 1b study. Blood. 2009;114(22):2870–2870. 10.1182/blood.V114.22.2870.2870.

Bensinger W, Maziarz RT, Jagannath S, Spencer A, Durrant S, Becker PS, et al. A phase 1 study of lucatumumab, a fully human anti- CD 40 antagonist monoclonal antibody administered intravenously to patients with relapsed or refractory multiple myeloma. Br J Haematol. 2012;159(1):58–66. 10.1111/j.1365-2141.2012.09251.x. PubMed

Horton HM, Bernett MJ, Peipp M, Pong E, Karki S, Chu SY, et al. Fc-engineered anti-CD40 antibody enhances multiple effector functions and exhibits potent in vitro and in vivo antitumor activity against hematologic malignancies. Blood. 2010;116(16):3004–12. 10.1182/blood-2010-01-265280. PubMed

Kuhn NF, Purdon TJ, Van Leeuwen DG, Lopez AV, Curran KJ, Daniyan AF, et al. CD40 ligand-modified chimeric antigen receptor T cells enhance antitumor function by eliciting an endogenous antitumor response. Cancer Cell. 2019;35(3):473-488.e6. 10.1016/j.ccell.2019.02.006. PubMed PMC

Zhang Y, Wang P, Wang T, Fang Y, Ding Y, Qian Q. Chimeric antigen receptor T cells engineered to secrete CD40 agonist antibodies enhance antitumor efficacy. J Transl Med. 2021;19(1):82. 10.1186/s12967-021-02750-4. PubMed PMC

Vonderheide RH. CD40 agonist antibodies in cancer immunotherapy. Annu Rev Med. 2020;71(1):47–58. 10.1146/annurev-med-062518-045435. PubMed

Zhou Y, Richmond A, Yan C. Harnessing the potential of CD40 agonism in cancer therapy. Cytokine Growth Factor Rev. 2024;75:40–56. 10.1016/j.cytogfr.2023.11.002. PubMed PMC

Flieswasser T, Camara-Clayette V, Danu A, Bosq J, Ribrag V, Zabrocki P, et al. Screening a broad range of solid and haematological tumour types for CD70 expression using a uniform IHC methodology as potential patient stratification method. Cancers. 2019;11(10):1611. 10.3390/cancers11101611. PubMed PMC

McEarchern JA, Oflazoglu E, Francisco L, McDonagh CF, Gordon KA, Stone I, et al. Engineered anti-CD70 antibody with multiple effector functions exhibits in vitro and in vivo antitumor activities. Blood. 2007;109(3):1185–92. 10.1182/blood-2006-07-034017. PubMed

Borst J, Hendriks J, Xiao Y. CD27 and CD70 in T cell and B cell activation. Curr Opin Immunol. 2005;17(3):275–81. 10.1016/j.coi.2005.04.004. PubMed

Li S, Chen D, Guo H, Liu D, Yang C, Zhang R, et al. The novel high-affinity humanized antibody IMM40H targets CD70, eliminates tumors via Fc-mediated effector functions, and interrupts CD70/CD27 signaling. Front Oncol. 2023;13:1240061. 10.3389/fonc.2023.1240061. PubMed PMC

Flieswasser T, Van Den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, et al. The CD70-CD27 axis in oncology: the new kids on the block. J Exp Clin Cancer Res. 2022;41(1):12. 10.1186/s13046-021-02215-y. PubMed PMC

Jacobs J, Deschoolmeester V, Zwaenepoel K, Rolfo C, Silence K, Rottey S, et al. CD70: an emerging target in cancer immunotherapy. Pharmacol Ther. 2015;155:1–10. 10.1016/j.pharmthera.2015.07.007. PubMed

Forster S, Bachmann C, Boy M, Radpour R, Schuerch CM, Brühl F, et al. CD70/CD27 signaling promotes expansion of clonal plasma cells in multiple myeloma and is a promising therapeutic target in advanced disease. Blood. 2023;142(Suppl 1):1936–1936. 10.1182/blood-2023-188431.

Wang X, Luo K, Xu Q, Chi L, Guo Y, Jia C, et al. Prognostic marker CD27 and its micro-environmental in multiple myeloma. BMC Cancer. 2024;24(1):352. 10.1186/s12885-024-11945-z. PubMed PMC

Jelinek T, Zihala D, Sevcikova T, Anilkumar Sithara A, Kapustova V, Sahinbegovic H, et al. Beyond the marrow: insights from comprehensive next-generation sequencing of extramedullary multiple myeloma tumors. Leukemia. 2024;38(6):1323–33. 10.1038/s41375-024-02206-w. PubMed PMC

Silence K, Dreier T, Moshir M, Ulrichts P, Gabriels SM, Saunders M, et al. ARGX-110, a highly potent antibody targeting CD70, eliminates tumors via both enhanced ADCC and immune checkpoint blockade. mAbs. 2014;6(2):523–32. 10.4161/mabs.27398. PubMed PMC

Pabst T, Vey N, Adès L, Bacher U, Bargetzi M, Fung S, et al. Results from a phase I/II trial of cusatuzumab combined with azacitidine in patients with newly diagnosed acute myeloid leukemia who are ineligible for intensive chemotherapy. Haematologica. 2023;108(7):1793–802. 10.3324/haematol.2022.281563. PubMed PMC

Zheng W, Liu D, Fan X, Powers L, Goswami M, Hu Y, et al. Potential therapeutic biomarkers in plasma cell myeloma: a flow cytometry study. Cytometry B Clin Cytom. 2013;84(4):222–8. 10.1002/cyto.b.21083. PubMed

Cheng J, Zhao Y, Hu H, Tang L, Zeng Y, Deng X, et al. Revealing the impact of CD70 expression on the manufacture and functions of CAR-70 T-cells based on single-cell transcriptomics. Cancer Immunol Immunother. 2023;72(10):3163–74. 10.1007/s00262-023-03475-7. PubMed PMC

Chen Y, Tao Y, Hu K, Lu J. GRP78 inhibitor HA15 increases the effect of Bortezomib on eradicating multiple myeloma cells through triggering endoplasmic reticulum stress. Heliyon. 2023;9(9): e19806. 10.1016/j.heliyon.2023.e19806. PubMed PMC

Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22(1):631–77. 10.1146/annurev.ge.22.120188.003215. PubMed

Gonzalez-Gronow M, Pizzo SV. Physiological roles of the autoantibodies to the 78-kilodalton glucose-regulated protein (GRP78) in cancer and autoimmune diseases. Biomedicines. 2022;10(6):1222. 10.3390/biomedicines10061222. PubMed PMC

Ge R, Kao C. Cell surface GRP78 as a death receptor and an anticancer drug target. Cancers. 2019;11(11):1787. 10.3390/cancers11111787. PubMed PMC

Tsai Y-L, Zhang Y, Tseng C-C, Stanciauskas R, Pinaud F, Lee AS. Characterization and mechanism of stress-induced translocation of 78-kilodalton glucose-regulated protein (GRP78) to the cell surface. J Biol Chem. 2015;290(13):8049–64. 10.1074/jbc.M114.618736. PubMed PMC

Wang S, Wei W, Yuan Y, Guo J, Liang D, Zhao X. Cell-surface GRP78-targeted chimeric antigen receptor T cells eliminate lung cancer tumor xenografts. Int J Mol Sci. 2024;25(1):564. 10.3390/ijms25010564. PubMed PMC

Hernandez I, Cohen M. Linking cell-surface GRP78 to cancer: from basic research to clinical value of GRP78 antibodies. Cancer Lett. 2022;524:1–14. 10.1016/j.canlet.2021.10.004. PubMed

Adomako A, Calvo V, Biran N, Osman K, Chari A, Paton JC, et al. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer. 2015;15(1):444. 10.1186/s12885-015-1460-1. PubMed PMC

Llewellyn DH, Roderick HL, Rose S. KDEL receptor expression is not coordinatedly up-regulated with ER stress-induced reticuloplasmin expression in HeLa cells. Biochem Biophys Res Commun. 1997;240(1):36–40. 10.1006/bbrc.1997.7607. PubMed

Steiner N, Borjan B, Hajek R, Jöhrer K, Göbel G, Willenbacher W, et al. Expression and release of glucose-regulated protein-78 (GRP78) in multiple myeloma. Oncotarget. 2017;8(34):56243–54. 10.18632/oncotarget.17353. PubMed PMC

Rasche L, Menoret E, Dubljevic V, Menu E, Vanderkerken K, Lapa C, et al. A GRP78-directed monoclonal antibody recaptures response in refractory multiple myeloma with extramedullary involvement. Clin Cancer Res. 2016;22(17):4341–9. 10.1158/1078-0432.CCR-15-3111. PubMed

Rasche L, Duell J, Castro IC, Dubljevic V, Chatterjee M, Knop S, et al. GRP78-directed immunotherapy in relapsed or refractory multiple myeloma - results from a phase 1 trial with the monoclonal immunoglobulin M antibody PAT-SM6. Haematologica. 2015;100(3):377–84. 10.3324/haematol.2014.117945. PubMed PMC

Kern J, Untergasser G, Zenzmaier C, Sarg B, Gastl G, Gunsilius E, et al. GRP-78 secreted by tumor cells blocks the antiangiogenic activity of bortezomib. Blood. 2009;114(18):3960–7. 10.1182/blood-2009-03-209668. PubMed

Hebbar N, Epperly R, Vaidya A, Thanekar U, Moore SE, Umeda M, et al. CAR T cells redirected to cell surface GRP78 display robust anti-acute myeloid leukemia activity and do not target hematopoietic progenitor cells. Nat Commun. 2022;13(1):587. 10.1038/s41467-022-28243-6. PubMed PMC

Van De Stolpe A, Van Der Saag PT. Intercellular adhesion molecule-1. J Mol Med. 1996;74(1):13–33. 10.1007/BF00202069. PubMed

Mendez MP, Morris SB, Wilcoxen S, Greeson E, Moore B, Paine R. Shedding of soluble ICAM-1 into the alveolar space in murine models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2006;290(5):L962–70. 10.1152/ajplung.00352.2005. PubMed

Jiang C, Li Y, Li Y, Liu L, Wang X, Wu W, et al. Fibrinogen promotes gallbladder cancer cell metastasis and extravasation by inducing ICAM1 expression. Med Oncol. 2022;40(1):10. 10.1007/s12032-022-01874-x. PubMed

Schmidmaier R, Mörsdorf K, Baumann P, Emmerich B, Meinhardt G. Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo. Int J Biol Markers. 2006;21(4):218–22. 10.1177/172460080602100404. PubMed

Espie D, Donnadieu E. New insights into CAR T cell-mediated killing of tumor cells. Front Immunol. 2022;13:1016208. 10.3389/fimmu.2022.1016208. PubMed PMC

Wei H, Wang Z, Kuang Y, Wu Z, Zhao S, Zhang Z, et al. Intercellular adhesion molecule-1 as target for CAR-T-cell therapy of triple-negative breast cancer. Front Immunol. 2020;11: 573823. 10.3389/fimmu.2020.573823. PubMed PMC

Xiao Y, Chen J, Wang J, Guan W, Wang M, Zhang L, et al. Acute myeloid leukemia epigenetic immune escape from nature killer cells by ICAM-1. Front Oncol. 2021;11: 751834. 10.3389/fonc.2021.751834. PubMed PMC

Ren Z, Kang W, Wang L, Sun B, Ma J, Zheng C, et al. E2F1 renders prostate cancer cell resistant to ICAM-1 mediated antitumor immunity by NF-κB modulation. Mol Cancer. 2014;13(1):84. 10.1186/1476-4598-13-84. PubMed PMC

Karash AR, Gilchrist A. Therapeutic potential of CCR1 antagonists for multiple myeloma. Future Med Chem. 2011;3(15):1889–908. 10.4155/fmc.11.144. PubMed

Gilchrist A, Echeverria SL. Targeting chemokine receptor CCR1 as a potential therapeutic approach for multiple myeloma. Front Endocrinol. 2022;13: 846310. 10.3389/fendo.2022.846310. PubMed PMC

Shao Z, Shen Q, Yao B, Mao C, Chen L-N, Zhang H, et al. Identification and mechanism of G protein-biased ligands for chemokine receptor CCR1. Nat Chem Biol. 2022;18(3):264–71. 10.1038/s41589-021-00918-z. PubMed PMC

Schaller MA, Kallal LE, Lukacs NW. A key role for CC chemokine receptor 1 in T-cell-mediated respiratory inflammation. Am J Pathol. 2008;172(2):386–94. 10.2353/ajpath.2008.070537. PubMed PMC

Jung S-H, Park S-S, Lim J-Y, Sohn SY, Kim NY, Kim D, et al. Single-cell analysis of multiple myelomas refines the molecular features of bortezomib treatment responsiveness. Exp Mol Med. 2022;54(11):1967–78. 10.1038/s12276-022-00884-z. PubMed PMC

Le K, Sun J, Ghaemmaghami J, Smith MR, Ip WKE, Phillips T, et al. Blockade of CCR1 induces a phenotypic shift in macrophages and triggers a favorable antilymphoma activity. Blood Adv. 2023;7(15):3952–67. 10.1182/bloodadvances.2022008722. PubMed PMC

Zeissig MN, Hewett DR, Panagopoulos V, Mrozik KM, To LB, Croucher PI, et al. Expression of the chemokine receptor CCR1 promotes the dissemination of multiple myeloma plasma cells in vivo. Haematologica. 2020;106(12):3176–87. 10.3324/haematol.2020.253526. PubMed PMC

Vandyke K, Zeissig MN, Hewett DR, Martin SK, Mrozik KM, Cheong CM, et al. HIF-2α Promotes Dissemination of Plasma Cells in Multiple Myeloma by Regulating CXCL12/CXCR4 and CCR1. Cancer Res. 2017;77(20):5452–63. 10.1158/0008-5472.CAN-17-0115. PubMed

Zeissig MN, Hewett DR, Mrozik KM, Panagopoulos V, Wallington-Gates CT, Spencer A, et al. Expression of the chemokine receptor CCR1 decreases sensitivity to bortezomib in multiple myeloma cell lines. Leuk Res. 2024;139: 107469. 10.1016/j.leukres.2024.107469. PubMed

Menu E, De Leenheer E, De Raeve H, Coulton L, Imanishi T, Miyashita K, et al. Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clin Exp Metastasis. 2006;23(5–6):291–300. 10.1007/s10585-006-9038-6. PubMed

Dairaghi DJ, Oyajobi BO, Gupta A, McCluskey B, Miao S, Powers JP, et al. CCR1 blockade reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease. Blood. 2012;120(7):1449–57. 10.1182/blood-2011-10-384784. PubMed PMC

Gilliland CT, Salanga CL, Kawamura T, Trejo J, Handel TM. The chemokine receptor CCR1 is constitutively active, which leads to G protein-independent, β-arrestin-mediated internalization. J Biol Chem. 2013;288(45):32194–210. 10.1074/jbc.M113.503797. PubMed PMC

Chen S, Boardman AP, James SE, Van Den Brink MRM. CCR1-Targeting CAR T Cells for Acute Myeloid Leukemia. Blood. 2023;142(Suppl 1):4808–4808. 10.1182/blood-2023-184464.

Korbecki J, Grochans S, Gutowska I, Barczak K, Baranowska-Bosiacka I. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int J Mol Sci. 2020;21(20):7619. 10.3390/ijms21207619. PubMed PMC

Mergia Terefe E, Catalan Opulencia MJ, Rakhshani A, Ansari MJ, Sergeevna SE, Awadh SA, et al. Roles of CCR10/CCL27–CCL28 axis in tumour development: mechanisms, diagnostic and therapeutic approaches, and perspectives. Expert Rev Mol Med. 2022;24: e37. 10.1017/erm.2022.28. PubMed

Luo Y, Zhou F, Wang X, Yang R, Li Y, Wu X, et al. Inhibition of cc chemokine receptor 10 ameliorates osteoarthritis via inhibition of the phosphoinositide-3-kinase/Akt/mammalian target of rapamycin pathway. J Orthop Surg Res. 2024;19(1):158. 10.1186/s13018-024-04642-x. PubMed PMC

Lim HD, Lane JR, Canals M, Stone MJ. Systematic assessment of chemokine signaling at chemokine receptors CCR4, CCR7 and CCR10. Int J Mol Sci. 2021;22(8):4232. 10.3390/ijms22084232. PubMed PMC

Liu Y, Xiao A, Zhang B. CCR10/CCL27 crosstalk regulates cell metastasis via PI3K-Akt signaling axis in non-small-cell lung cancer. Am J Transl Res. 2021;13(11):13135–46. PubMed PMC

Kühnelt-Leddihn L, Müller H, Eisendle K, Zelger B, Weinlich G. Overexpression of the chemokine receptors CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma: a potential prognostic value for CCR7 and CCR10? Arch Dermatol Res. 2012;304(3):185–93. 10.1007/s00403-012-1222-8. PubMed

Thangavadivel S, Zelle-Rieser C, Olivier A, Postert B, Untergasser G, Kern J, et al. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma. Oncotarget. 2016;7(48):78605–18. 10.18632/oncotarget.12522. PubMed PMC

Patiño-Escobar B, Ferguson ID, Wiita AP. Unraveling the surface proteomic profile of multiple myeloma to reveal new immunotherapeutic targets and markers of drug resistance. Cell Stress. 2022;6(11):89–92. 10.15698/cst2022.11.273. PubMed PMC

Chilakapati N, Patino-Escobar B, deMontagnac J, Johnson H, Ramos E, Phojanakong P, et al. Structure guided design of CCL27 CAR T-cells against CCR10 for multiple myeloma. Blood. 2024;144(Suppl 1):2036–2036. 10.1182/blood-2024-206274.

De Salort J, Sintes J, Llinàs L, Matesanz-Isabel J, Engel P. Expression of SLAM (CD150) cell-surface receptors on human B-cell subsets: from pro-B to plasma cells. Immunol Lett. 2011;134(2):129–36. 10.1016/j.imlet.2010.09.021. PubMed

McArdel SL, Terhorst C, Sharpe AH. Roles of CD48 in regulating immunity and tolerance. Clin Immunol. 2016;164:10–20. 10.1016/j.clim.2016.01.008. PubMed PMC

Pahima H, Puzzovio PG, Levi-Schaffer F. 2B4 and CD48: a powerful couple of the immune system. Clin Immunol. 2019;204:64–8. 10.1016/j.clim.2018.10.014. PubMed

Milstein O, Tseng S-Y, Starr T, Llodra J, Nans A, Liu M, et al. Nanoscale increases in CD2-CD48-mediated intermembrane spacing decrease adhesion and reorganize the immunological synapse. J Biol Chem. 2008;283(49):34414–22. 10.1074/jbc.M804756200. PubMed PMC

He M, Yu J, Chen S, Mi H. A systematic immune and prognostic analysis of CD48 interaction with tumor microenvironment in pan-cancer. Int J Gen Med. 2023;16:5255–69. 10.2147/IJGM.S431696. PubMed PMC

Kotzur R, Stein N, Kahlon S, Berhani O, Isaacson B, Mandelboim O. Eradication of CD48-positive tumors by selectively enhanced YTS cells harnessing the lncRNA NeST. iScience. 2023;26(8):107284. 10.1016/j.isci.2023.107284. PubMed PMC

Smith GM, Biggs J, Norris B, Anderson-Stewart P, Ward R. Detection of a soluble form of the leukocyte surface antigen CD48 in plasma and its elevation in patients with lymphoid leukemias and arthritis. J Clin Immunol. 1997;17(6):502–9. 10.1023/A:1027327912204. PubMed

Ashour R, Ri M, Aly SS, Yoshida T, Tachita T, Kanamori T, et al. Expression analysis of two SLAM family receptors, SLAMF2 and SLAMF7, in patients with multiple myeloma. Int J Hematol. 2019;110(1):69–76. 10.1007/s12185-019-02649-3. PubMed

Hosen N, Ichihara H, Mugitani A, Aoyama Y, Fukuda Y, Kishida S, et al. CD48 as a novel molecular target for antibody therapy in multiple myeloma. Br J Haematol. 2012;156(2):213–24. 10.1111/j.1365-2141.2011.08941.x. PubMed

Lewis TS, Olson D, Gordon K, Sandall S, Quick M, Finn M, et al. SGN-CD48A: a novel humanized anti-CD48 antibody-drug conjugate for the treatment of multiple myeloma. Blood. 2016;128(22):4470–4470. 10.1182/blood.V128.22.4470.4470.

Olson DJ, Liu BA, Zaval M, Cao A, Gurgel J, Cochran J, et al. Abstract 5619: Additional mechanisms of action of SGN-CD48A in multiple myeloma and improved antitumor activity in combination with daratumumab. Cancer Res. 2018;78 13_Suppl:5619–5619. 10.1158/1538-7445.AM2018-5619.

White D, Cote-Martin A, Bleck M, Garaffa N, Shaaban A, Wu H, et al. Programmed cell death-1 (PD-1) anchoring to the GPI-linked co-receptor CD48 reveals a novel mechanism to modulate PD-1-dependent inhibition of human T cells. Mol Immunol. 2023;156:31–8. 10.1016/j.molimm.2023.02.007. PubMed

Enz N, Vliegen G, De Meester I, Jungraithmayr W. CD26/DPP4 - a potential biomarker and target for cancer therapy. Pharmacol Ther. 2019;198:135–59. 10.1016/j.pharmthera.2019.02.015. PubMed

Chittepu VCSR, Kalhotra P, Osorio-Gallardo T, Jiménez-Martínez C, Robles-de La Torre RR, Gallardo-Velazquez T, et al. New molecular insights into the inhibition of dipeptidyl peptidase-4 by natural cyclic peptide oxytocin. Molecules. 2019;24(21):3887. 10.3390/molecules24213887. PubMed PMC

Kopinska A, Krawczyk-Kulis M, Dziaczkowska-Suszek J, Bieszczad K, Jagoda K, Kyrcz-Krzemien S. The importance of the number of transplanted cells with dipeptidyl peptidase-4 expression on the haematopoietic recovery and lymphocyte reconstitution in patients with multiple myeloma after autologous haematopoietic stem-cell transplantation. Hematol Oncol. 2017;35(2):225–31. 10.1002/hon.2267. PubMed

Iwanaga T, Nio-Kobayashi J. Cellular expression of CD26/dipeptidyl peptidase IV. Biomed Res. 2021;42(6):229–37. 10.2220/biomedres.42.229. PubMed

Shao S, Xu Q, Yu X, Pan R, Chen Y. Dipeptidyl peptidase 4 inhibitors and their potential immune modulatory functions. Pharmacol Ther. 2020;209: 107503. 10.1016/j.pharmthera.2020.107503. PubMed PMC

Busek P, Duke-Cohan JS, Sedo A. Does DPP-IV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers. 2022;14(9):2072. 10.3390/cancers14092072. PubMed PMC

Nishida H, Hayashi M, Morimoto C, Sakamoto M, Yamada T. CD26 is a potential therapeutic target by humanized monoclonal antibody for the treatment of multiple myeloma. Blood Cancer J. 2018;8(11):99. 10.1038/s41408-018-0127-y. PubMed PMC

Ho L, Aytac U, Stephens LC, Ohnuma K, Mills GB, McKee KS, et al. In vitro and in vivo antitumor effect of the anti-CD26 monoclonal antibody 1F7 on human CD30+ anaplastic large cell T-cell lymphoma Karpas 299. Clin Cancer Res. 2001;7(7):2031–40. PubMed

Nargis T, Kumar K, Ghosh AR, Sharma A, Rudra D, Sen D, et al. KLK5 induces shedding of DPP4 from circulatory Th17 cells in type 2 diabetes. Mol Metab. 2017;6(11):1529–39. 10.1016/j.molmet.2017.09.004. PubMed PMC

Röhrborn D, Eckel J, Sell H. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett. 2014;588(21):3870–7. 10.1016/j.febslet.2014.08.029. PubMed

Kawanabe Y, Nauli SM. Endothelin. Cell Mol Life Sci. 2011;68(2):195–203. 10.1007/s00018-010-0518-0. PubMed PMC

Dagamajalu S, Rex DAB, Gopalakrishnan L, Karthikkeyan G, Gurtoo S, Modi PK, et al. A network map of endothelin mediated signaling pathway. J Cell Commun Signal. 2021;15(2):277–82. 10.1007/s12079-020-00581-4. PubMed PMC

Shihoya W, Izume T, Inoue A, Yamashita K, Kadji FMN, Hirata K, et al. Crystal structures of human ETB receptor provide mechanistic insight into receptor activation and partial activation. Nat Commun. 2018;9(1):4711. 10.1038/s41467-018-07094-0. PubMed PMC

Halaka M, Hired ZA, Rutledge GE, Hedgepath CM, Anderson MP, St. John H, et al. Differences in endothelin B receptor isoforms expression and function in breast cancer cells. J Cancer. 2020;11(9):2688–701. 10.7150/jca.41004. PubMed PMC

Saldana-Caboverde A, Kos L. Roles of endothelin signaling in melanocyte development and melanoma: Endothelins in melanocyte development and melanoma. Pigment Cell Melanoma Res. 2010;23(2):160–70. 10.1111/j.1755-148X.2010.00678.x. PubMed PMC

Russignan A, Spina C, Tamassia N, Cassaro A, Rigo A, Bagnato A, et al. Endothelin-1 receptor blockade as new possible therapeutic approach in multiple myeloma. Br J Haematol. 2017;178(5):781–93. 10.1111/bjh.14771. PubMed

Lejeune M, Köse MC, Jassin M, Gou M-J, Herbet A, Duray E, et al. Integrative analysis of proteomics and transcriptomics reveals endothelin receptor B as novel single target and identifies new combinatorial targets for multiple myeloma. HemaSphere. 2023;7(7): e901. 10.1097/HS9.0000000000000901. PubMed PMC

Merz M, Merz AMA, Wang J, Wei L, Hu Q, Hutson N, et al. Deciphering spatial genomic heterogeneity at a single cell resolution in multiple myeloma. Nat Commun. 2022;13(1):807. 10.1038/s41467-022-28266-z. PubMed PMC

Grossmann S, Grossmann S, Higashiyama S, Oksche A, Grossmann S, Higashiyama S, et al. Localisation of endothelin B receptor variants to plasma membrane microdomains and its effects on downstream signalling. Mol Membr Biol. 2009;26(5–7):279–92. 10.1080/09687680903191682. PubMed

Patel T, McKeage K. Macitentan: first global approval. Drugs. 2014;74(1):127–33. 10.1007/s40265-013-0156-6. PubMed

Russignan A, Dal Collo G, Bagnato A, Tamassia N, Bugatti M, Belleri M, et al. Targeting the endothelin-1 receptors curtails tumor growth and angiogenesis in multiple myeloma. Front Oncol. 2021;10: 600025. 10.3389/fonc.2020.600025. PubMed PMC

Herbet A, Costa N, Leventoux N, Mabondzo A, Couraud J-Y, Borrull A, et al. Antibodies targeting human endothelin-1 receptors reveal different conformational states in cancer cells. Physiol Res. 2018;S257–64. 10.33549/physiolres.933848. PubMed

Gulati A. Endothelin Receptors, Mitochondria and Neurogenesis in Cerebral Ischemia. Curr Neuropharmacol. 2016;14(6):619–26. 10.2174/1570159X14666160119094959. PubMed PMC

Zhang J, Yang W, Hu B, Wu W, Fallon MB. Endothelin-1 activation of the endothelin B receptor modulates pulmonary endothelial CX3CL1 and contributes to pulmonary angiogenesis in experimental hepatopulmonary syndrome. Am J Pathol. 2014;184(6):1706–14. 10.1016/j.ajpath.2014.02.027. PubMed PMC

Zhang Y, Xie R, Zhang H, Zheng Y, Lin C, Yang L, et al. Integrin β7 inhibits colorectal cancer pathogenesis via maintaining antitumor immunity. Cancer Immunol Res. 2021;9(8):967–80. 10.1158/2326-6066.CIR-20-0879. PubMed

Chen S, Zheng Y, Ran X, Du H, Feng H, Yang L, et al. Integrin αEβ7+ T cells direct intestinal stem cell fate decisions via adhesion signaling. Cell Res. 2021;31(12):1291–307. 10.1038/s41422-021-00561-2. PubMed PMC

Neri P, Ren L, Azab AK, Brentnall M, Gratton K, Klimowicz AC, et al. Integrin β7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood. 2011;117(23):6202–13. 10.1182/blood-2010-06-292243. PubMed PMC

Hosen N. Integrins in multiple myeloma Inflamm Regener. 2020;40(1):4. 10.1186/s41232-020-00113-y. PubMed PMC

Roy Choudhury S, Byrum SD, Alkam D, Ashby C, Zhan F, Tackett AJ, et al. Expression of integrin β-7 is epigenetically enhanced in multiple myeloma subgroups with high-risk cytogenetics. Clin Epigenet. 2023;15(1):18. 10.1186/s13148-023-01433-9. PubMed PMC

Hosen N, Matsunaga Y, Hasegawa K, Matsuno H, Nakamura Y, Makita M, et al. The activated conformation of integrin β7 is a novel multiple myeloma–specific target for CAR T cell therapy. Nat Med. 2017;23(12):1436–43. 10.1038/nm.4431. PubMed

Nurzat Y, Su W, Min P, Li K, Xu H, Zhang Y. Identification of therapeutic targets and prognostic biomarkers among integrin subunits in the skin cutaneous melanoma microenvironment. Front Oncol. 2021;11: 751875. 10.3389/fonc.2021.751875. PubMed PMC

Zhang HL, Zheng YJ, Pan YD, Xie C, Sun H, Zhang YH, et al. Regulatory T-cell depletion in the gut caused by integrin β7 deficiency exacerbates DSS colitis by evoking aberrant innate immunity. Mucosal Immunol. 2016;9(2):391–400. 10.1038/mi.2015.68. PubMed

Ravetch JV, Lanier LL. Immune inhibitory receptors. Science. 2000;290(5489):84–9. 10.1126/science.290.5489.84. PubMed

Cella M, Döhring C, Samaridis J, Dessing M, Brockhaus M, Lanzavecchia A, et al. A novel inhibitory receptor (ILT3) expressed on monocytes, macrophages, and dendritic cells involved in antigen processing. J Exp Med. 1997;185(10):1743–51. 10.1084/jem.185.10.1743. PubMed PMC

Chang C-C, Zhang Q-Y, Liu Z, Clynes RA, Suciu-Foca N, Vlad G. Downregulation of inflammatory microRNAs by Ig-like transcript 3 is essential for the differentiation of human CD8(+) T suppressor cells. J Immunol. 2012;188(7):3042–52. 10.4049/jimmunol.1102899. PubMed

Fukao S, Haniuda K, Nojima T, Takai T, Kitamura D. gp49B-mediated negative regulation of antibody production by memory and marginal zone B cells. J Immunol. 2014;193(2):635–44. 10.4049/jimmunol.1302772. PubMed

Liu J, Lu C, Zhang F, Lv W, Liu C. Expression of ILT3 predicts poor prognosis and is inversely associated with infiltration of CD45RO+ T cells in patients with colorectal cancer. Pathol Res Pract. 2018;214(10):1621–5. 10.1016/j.prp.2018.07.026. PubMed

Li J, Gao A, Zhang F, Wang S, Wang J, Wang J, et al. ILT3 promotes tumor cell motility and angiogenesis in non-small cell lung cancer. Cancer Lett. 2021;501:263–76. 10.1016/j.canlet.2020.10.048. PubMed

Khan MF, Bahr JM, Yellapa A, Bitterman P, Abramowicz JS, Edassery SL, et al. Expression of leukocyte inhibitory immunoglobulin-like transcript 3 receptors by ovarian tumors in laying hen model of spontaneous ovarian cancer. Transl Oncol. 2012;5(2):85–91. 10.1593/tlo.11328. PubMed PMC

Suciu-Foca N, Feirt N, Zhang Q-Y, Vlad G, Liu Z, Lin H, et al. Soluble Ig-like transcript 3 inhibits tumor allograft rejection in humanized SCID mice and T cell responses in cancer patients. J Immunol. 2007;178(11):7432–41. 10.4049/jimmunol.178.11.7432. PubMed

Anami Y, Deng M, Gui X, Yamaguchi A, Yamazaki CM, Zhang N, et al. LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid leukemia. Mol Cancer Ther. 2020;19(11):2330–9. 10.1158/1535-7163.MCT-20-0407. PubMed PMC

Deng M, Gui X, Kim J, Xie L, Chen W, Li Z, et al. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature. 2018;562(7728):605–9. 10.1038/s41586-018-0615-z. PubMed PMC

Xie L, Chen C, Zhang T, Yang W, Zheng D, Cao L, et al. LILRB4 regulates multiple myeloma development through STAT3-PFKFB1 pathway. Cell Death Dis. 2024;15(7):515. 10.1038/s41419-024-06883-4. PubMed PMC

Singh L, Muise ES, Bhattacharya A, Grein J, Javaid S, Stivers P, et al. ILT3 (LILRB4) promotes the immunosuppressive function of tumor-educated human monocytic myeloid-derived suppressor cells. Mol Cancer Res. 2021;19(4):702–16. 10.1158/1541-7786.MCR-20-0622. PubMed

Dinardo C, Pollyea D, Aribi A, Jonas B, Jeyakumar D, Roboz G, et al. P536: a first-in-human phase 1 study of IO-202 (anti-LILRB4 mab) in acute myeloid leukemia (AML) with monocytic differentiation and chronic myelomonocytic leukemia (CMML) patients. HemaSphere. 2023;7(S3):e605335a. 10.1097/01.HS9.0000969052.60533.5a.

John S, Chen H, Deng M, Gui X, Wu G, Chen W, et al. A novel anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol Ther. 2018;26(10):2487–95. 10.1016/j.ymthe.2018.08.001. PubMed PMC

Rui W, Lei L, Zhang Z, Wu C, Xia Y, Liu Y, et al. Abstract 3185: Development of LILRB4 biparatopic synthetic T-cell receptor and antigen receptor (STAR)-T cells for the treatment of acute myeloid leukemia (AML). Cancer Res. 2023;83 7_Suppl:3185–3185. 10.1158/1538-7445.AM2023-3185.

Gong L, Sun H, Liu L, Sun X, Fang T, Yu Z, et al. LILRB4 represents a promising target for immunotherapy by dual targeting tumor cells and myeloid-derived suppressive cells in multiple myeloma. Haematologica. 2024;109(11):3650–69. 10.3324/haematol.2024.285099. PubMed PMC

Wang H, Wang L, Luan H, Xiao J, Zhao Z, Yu P, et al. LILRB4 on multiple myeloma cells promotes bone lesion by p-SHP2/NF-κB/RELT signal pathway. J Exp Clin Cancer Res. 2024;43(1):183. 10.1186/s13046-024-03110-y. PubMed PMC

Itzhaki Ben Zadok O, Shiyovich A, Hamdan A, Yeshurun M, Nardi Agmon I, Raanani P, et al. Anti-immunoglobulin-like transcript 3 induced acute myocarditis-A case report. Front Cardiovasc Med. 2022;9:1035569. 10.3389/fcvm.2022.1035569. PubMed PMC

Veillette A. Immune regulation by SLAM family receptors and SAP-related adaptors. Nat Rev Immunol. 2006;6(1):56–66. 10.1038/nri1761. PubMed

Ishibashi M, Takahashi R, Tsubota A, Sasaki M, Handa H, Imai Y, et al. SLAMF3-mediated signaling via ERK pathway activation promotes aggressive phenotypic behaviors in multiple myeloma. Mol Cancer Res. 2020;18(4):632–43. 10.1158/1541-7786.MCR-19-0391. PubMed

Roncador G, Puñet-Ortiz J, Maestre L, Rodríguez-Lobato LG, Jiménez S, Reyes-García AI, et al. CD229 (Ly9) a novel biomarker for B-cell malignancies and multiple myeloma. Cancers. 2022;14(9):2154. 10.3390/cancers14092154. PubMed PMC

Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi A-A. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol. 2023;14:1174138. 10.3389/fimmu.2023.1174138. PubMed PMC

Yousef S, Kovacsovics-Bankowski M, Salama ME, Bhardwaj N, Steinbach M, Langemo A, et al. CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma. Hum Vaccin Immunother. 2015;11(7):1606–11. 10.1080/21645515.2015.1046658. PubMed PMC

Setayesh SM, Ndacayisaba LJ, Rappard KE, Hennes V, Rueda LYM, Tang G, et al. Targeted single-cell proteomic analysis identifies new liquid biopsy biomarkers associated with multiple myeloma. NPJ Precis Oncol. 2023;7(1):95. 10.1038/s41698-023-00446-0. PubMed PMC

Olson M, Radhakrishnan SV, Luetkens T, Atanackovic D. The role of surface molecule CD229 in Multiple Myeloma. Clin Immunol. 2019;204:69–73. 10.1016/j.clim.2018.10.006. PubMed

Rai S, Das N, Gupta R, Kumar L, Sharma A, Singh S, et al. Utility of CD229 as novel marker in measurable residual disease assessment in multiple myeloma -An evidence-based approach. Int J Lab Hematol. 2023;45(2):179–86. 10.1111/ijlh.13992. PubMed

Radhakrishnan SV, Luetkens T, Scherer SD, Davis P, Vander Mause ER, Olson ML, et al. CD229 CAR T cells eliminate multiple myeloma and tumor propagating cells without fratricide. Nat Commun. 2020;11(1):798. 10.1038/s41467-020-14619-z. PubMed PMC

Vander Mause ER, Baker JM, Dietze KA, Radhakrishnan SV, Iraguha T, Omili D, et al. Systematic single amino acid affinity tuning of CD229 CAR T cells retains efficacy against multiple myeloma and eliminates on-target off-tumor toxicity. Sci Transl Med. 2023;15(705):eadd7900. 10.1126/scitranslmed.add7900. PubMed

Zhou X, Rasche L, Kortüm KM, Mersi J, Einsele H. BCMA loss in the epoch of novel immunotherapy for multiple myeloma: from biology to clinical practice. Haematologica. 2022;108(4):958–68. 10.3324/haematol.2020.266841. PubMed PMC

Li D, Xiong W, Wang Y, Feng J, He Y, Du J, et al. SLAMF3 and SLAMF4 are immune checkpoints that constrain macrophage phagocytosis of hematopoietic tumors. Sci Immunol. 2022;7(67):eabj5501. 10.1126/sciimmunol.abj5501. PubMed

Nkyimbeng-Takwi E, Chapoval SP. Biology and function of neuroimmune semaphorins 4A and 4D. Immunol Res. 2011;50(1):10–21. 10.1007/s12026-010-8201-y. PubMed PMC

Nishide M, Kumanogoh A. The role of semaphorins in immune responses and autoimmune rheumatic diseases. Nat Rev Rheumatol. 2018;14(1):19–31. 10.1038/nrrheum.2017.201. PubMed

Avouac J, Vandebeuque E, Combier A, Poiroux L, Steelandt A, Boisson M, et al. Relevance of circulating Semaphorin 4A for rheumatoid arthritis response to treatment. Sci Rep. 2023;13(1):14626. 10.1038/s41598-023-41943-3. PubMed PMC

Lu N, Li Y, Zhang Z, Xing J, Sun Y, Yao S, et al. Human semaphorin-4A drives Th2 responses by binding to receptor ILT-4. Nat Commun. 2018;9(1):742. 10.1038/s41467-018-03128-9. PubMed PMC

Naito Y, Koyama S, Masuhiro K, Hirai T, Uenami T, Inoue T, et al. Tumor-derived semaphorin 4A improves PD-1–blocking antibody efficacy by enhancing CD8+ T cell cytotoxicity and proliferation. Sci Adv. 2023;9(20):eade0718. 10.1126/sciadv.ade0718. PubMed PMC

Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, et al. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci. 2023;318: 121499. 10.1016/j.lfs.2023.121499. PubMed

Roy JP, Anderson GSF, Walker I, Chapman MA. Development of the first SEMA4A CAR-T cell targeting multiple myeloma. Blood. 2022;140(Supplement 1):9961–2. 10.1182/blood-2022-168968.

Rintoul RC, Buttery RC, Mackinnon AC, Wong WS, Mosher D, Haslett C, et al. Brugge JS, editor. Cross-linking CD98 promotes integrin-like signaling and anchorage-independent growth. Mol Biol Cell. 2002;13(8):2841–52. 10.1091/mbc.01-11-0530. PubMed PMC

Cantor JM, Ginsberg MH, Rose DM. Integrin-associated proteins as potential therapeutic targets. Immunol Rev. 2008;223(1):236–51. 10.1111/j.1600-065X.2008.00640.x. PubMed

Vection S, O’Callaghan D, Keriel A. CD98hc in host–pathogen interactions: roles of the multifunctional host protein during infections. FEMS Microbiol Rev. 2022;46(5):fuac023. 10.1093/femsre/fuac023. PubMed

Feral CC, Nishiya N, Fenczik CA, Stuhlmann H, Slepak M, Ginsberg MH. CD98hc (SLC3A2) mediates integrin signaling. Proc Natl Acad Sci USA. 2005;102(2):355–60. 10.1073/pnas.0404852102. PubMed PMC

Zent R, Fenczik CA, Calderwood DA, Liu S, Dellos M, Ginsberg MH. Class- and splice variant-specific association of CD98 with integrin β cytoplasmic domains. J Biol Chem. 2000;275(7):5059–64. 10.1074/jbc.275.7.5059. PubMed

Milkereit R, Persaud A, Vanoaica L, Guetg A, Verrey F, Rotin D. LAPTM4b recruits the LAT1-4F2hc Leu transporter to lysosomes and promotes mTORC1 activation. Nat Commun. 2015;6(1):7250. 10.1038/ncomms8250. PubMed PMC

Liu C, Li X, Li C, Zhang Z, Gao X, Jia Z, et al. Pizzo SV, editor. SLC3A2 is a novel endoplasmic reticulum stress-related signaling protein that regulates the unfolded protein response and apoptosis. PLoS ONE. 2018;13(12):e0208993. 10.1371/journal.pone.0208993. PubMed PMC

Chai F, Zhang J, Fu T, Jiang P, Huang Y, Wang L, et al. Identification of SLC2A3 as a prognostic indicator correlated with the NF-κB/EMT axis and immune response in head and neck squamous cell carcinoma. Channels. 2023;17(1):2208928. 10.1080/19336950.2023.2208928. PubMed PMC

Hasegawa K, Ikeda S, Yaga M, Watanabe K, Urakawa R, Iehara A, et al. Selective targeting of multiple myeloma cells with a monoclonal antibody recognizing the ubiquitous protein CD98 heavy chain. Sci Transl Med. 2022;14(632):eaax7706. 10.1126/scitranslmed.aax7706. PubMed

Spinello I, Labbaye C, Saulle E. Metabolic function and therapeutic potential of CD147 for hematological malignancies: an overview. Int J Mol Sci. 2024;25(17):9178. 10.3390/ijms25179178. PubMed PMC

Heider M, Eichner R, Stroh J, Morath V, Kuisl A, Zecha J, et al. The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma. Mol Cell. 2021;81(6):1170-1186.e10. 10.1016/j.molcel.2020.12.046. PubMed PMC

Cantor J, Browne CD, Ruppert R, Féral CC, Fässler R, Rickert RC, et al. CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat Immunol. 2009;10(4):412–9. 10.1038/ni.1712. PubMed PMC

Cantor J, Slepak M, Ege N, Chang JT, Ginsberg MH. Loss of T cell CD98 H chain specifically ablates T cell clonal expansion and protects from autoimmunity. J Immunol. 2011;187(2):851–60. 10.4049/jimmunol.1100002. PubMed PMC

Bajaj J, Konuma T, Lytle NK, Kwon HY, Ablack JN, Cantor JM, et al. CD98-mediated adhesive signaling enables the establishment and propagation of acute myelogenous leukemia. Cancer Cell. 2016;30(5):792–805. 10.1016/j.ccell.2016.10.003. PubMed PMC

Nachef M, Ali AK, Almutairi SM, Lee S-H. Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment. Front Immunol. 2021;12: 624324. 10.3389/fimmu.2021.624324. PubMed PMC

Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol. 2018;9:2285. 10.3389/fimmu.2018.02285. PubMed PMC

Shen X, Zhu W, Zhang X, Xu G, Ju S. A role of both NF-κB pathways in expression and transcription regulation of BAFF-R gene in multiple myeloma cells. Mol Cell Biochem. 2011;357(1–2):21–30. 10.1007/s11010-011-0871-9. PubMed

Sevdali E, Block Saldana V, Speletas M, Eibel H. BAFF receptor polymorphisms and deficiency in humans. Curr Opin Immunol. 2021;71:103–10. 10.1016/j.coi.2021.06.008. PubMed

Smulski CR, Kury P, Seidel LM, Staiger HS, Edinger AK, Willen L, et al. BAFF- and TACI-dependent processing of BAFFR by ADAM proteases regulates the survival of B cells. Cell Rep. 2017;18(9):2189–202. 10.1016/j.celrep.2017.02.005. PubMed

Schweighoffer E, Tybulewicz VL. BAFF signaling in health and disease. Curr Opin Immunol. 2021;71:124–31. 10.1016/j.coi.2021.06.014. PubMed

McWilliams EM, Lucas CR, Chen T, Harrington BK, Wasmuth R, Campbell A, et al. Anti–BAFF-R antibody VAY-736 demonstrates promising preclinical activity in CLL and enhances effectiveness of ibrutinib. Blood Adv. 2019;3(3):447–60. 10.1182/bloodadvances.2018025684. PubMed PMC

Novak AJ, Darce JR, Arendt BK, Harder B, Henderson K, Kindsvogel W, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004;103(2):689–94. 10.1182/blood-2003-06-2043. PubMed

Mishra A, Gupta A, Dagar G, Das D, Chakraborty A, Haque S, et al. CAR-T-cell therapy in multiple myeloma: B-cell maturation antigen (BCMA) and beyond. Vaccines. 2023;11(11):1721. 10.3390/vaccines11111721. PubMed PMC

Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Sig Transduct Target Ther. 2023;8(1):306. 10.1038/s41392-023-01521-5. PubMed PMC

Rodríguez-Lobato LG, Oliver-Caldés A, Moreno DF, Fernández De Larrea C, Bladé J. Why immunotherapy fails in multiple myeloma. Hemato. 2020;2(1):1–42. 10.3390/hemato2010001.

Gajewski TF, Meng Y, Harlin H. Immune suppression in the tumor microenvironment. J Immunother. 2006;29(3):233–40. 10.1097/01.cji.0000199193.29048.56. PubMed

Liang Y, He H, Wang W, Wang H, Mo S, Fu R, et al. Malignant clonal evolution drives multiple myeloma cellular ecological diversity and microenvironment reprogramming. Mol Cancer. 2022;21(1):182. 10.1186/s12943-022-01648-z. PubMed PMC

Bhawal R, Oberg AL, Zhang S, Kohli M. Challenges and opportunities in clinical applications of blood-based proteomics in cancer. Cancers. 2020;12(9):2428. 10.3390/cancers12092428. PubMed PMC

Carter PJ, Rajpal A. Designing antibodies as therapeutics. Cell. 2022;185(15):2789–805. 10.1016/j.cell.2022.05.029. PubMed

Celichowski P, Turi M, Charvátová S, Radhakrishnan D, Feizi N, Chyra Z, et al. Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. J Transl Med. 2023;21(1):197. 10.1186/s12967-023-04041-6. PubMed PMC

Cho R-L, Yang C-C, Lee I-T, Lin C-C, Chi P-L, Hsiao L-D, et al. Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. Am J Physiol Cell Mol Physiol. 2016;310(7):L639–57. 10.1152/ajplung.00109.2014. PubMed

Yang Y, Vedvyas Y, McCloskey JE, Min IM, Jin MM. Abstract 2322: ICAM-1 targeting CAR T cell therapy for triple negative breast cancer. Cancer Res. 2019;79 13_Suppl:2322–2322. 10.1158/1538-7445.AM2019-2322.

Tsakadze NL, Sithu SD, Sen U, English WR, Murphy G, D’Souza SE. Tumor necrosis factor-α-converting enzyme (TACE/ADAM-17) mediates the ectodomain cleavage of intercellular adhesion molecule-1 (ICAM-1). J Biol Chem. 2006;281(6):3157–64. 10.1074/jbc.M510797200. PubMed

Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–67. 10.1016/j.ccell.2019.01.007. PubMed PMC

Chen P, Crawley SC, Lin VY, Kapoor V, Paavola KJ, Chen H-I, et al. Abstract LB216: pre-clinical characterization of NGM831, an ILT3 antagonist antibody for the treatment of solid tumors. Cancer Res. 2022;82 12_Suppl:LB216–LB216. 10.1158/1538-7445.AM2022-LB216.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...