• This record comes from PubMed

How a High-Gradient Magnetic Field Could Affect Cell Life

. 2016 Nov 18 ; 6 () : 37407. [epub] 20161118

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.

See more in PubMed

Cho M. H. et al.. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11, 1038–1043 (2012). PubMed

Qin S. et al.. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016). PubMed

Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008). PubMed

Saunders R. Static magnetic fields: animal studies. Prog. Biophys. Mol. Bio. 87, 225–239 (2005). PubMed

Rosen A. D. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39, 163–173 (2003). PubMed

Pazur A., Schimek C. & Galland P. Magnetoreception in microorganisms and fungi. Cent. Eur. J. Biol. 2, 597–659 (2007).

Dini L. & Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36, 195–217 (2005). PubMed

Zhou S. A. & Uesaka M. Bioelectrodynamics in living organisms. Int. J. Eng. Sci. 44, 67–92 (2006).

Funk R. H. W., Monsees T. & Ozkucur N. Electromagnetic effects - From cell biology to medicine. Prog. Histochem. Cyto. 43, 177–264 (2009). PubMed

Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog. Biophys. Mol. Bio. 87, 213–223 (2005). PubMed

Di S. M. et al.. Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. Int. J. Radiat. Biol. 88, 806–813 (2012). PubMed

Qian A. R. et al.. Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/alpha beta 1 integrin. PLoS One 8, e51036 (2013). PubMed PMC

Neurath P. W. High gradient magnetic field inhibits embryonic development of frogs. Nature 219, 1358–1359 (1968). PubMed

Schenck J. F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23, 815–850 (1996). PubMed

Timonen J. V. I., Latikka M., Leibler L., Ras R. H. A. & Ikkala O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341, 253–257 (2013). PubMed

Dumas-Bouchiat F. et al.. Thermomagnetically patterned micromagnets. Appl. Phys. Lett. 96, 102511 (2010).

Osman O. et al.. Microfluidic immunomagnetic cell separation using integrated permanent micromagnets. Biomicrofluidics 7, 054115 (2013). PubMed PMC

Osman O. et al.. Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomed. Microdevices 14, 947–954 (2012). PubMed

Zanini L. F., Dempsey N. M., Givord D., Reyne G. & Dumas-Bouchiat F. Autonomous micro-magnet based systems for highly efficient magnetic separation. Appl. Phys. Lett. 99, 232504 (2011).

Zanini L. F. et al.. Micromagnet structures for magnetic positioning and alignment. J. Appl. Phys. 111, 07b312 (2012).

Cohen A. E. Nanomagnetic control of intersystem crossing. Journal of Physical Chemistry A 113, 11084–11092 (2009). PubMed

Cai J. M. Quantum probe and design for a chemical compass with magnetic nanostructures. Phys. Rev. Lett. 106, 100501 (2011). PubMed

Law K. F. F. et al.. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Appl. Phys. Lett. 108, 091104 (2016).

Phillips R. & Quake S. R. The biological frontier of physics. Phys. Today 59, 38–43 (2006).

Higgs P. G. & Joanny J. F. Enhanced membrane rigidity in charged lamellar phases. J. Phys-Paris 51, 2307–2320 (1990).

Levin M. & Stevenson C. G. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu. Rev. Biomed. Eng. 14, 295–323 (2012). PubMed PMC

Binggeli R. & Weinstein R. C. Membrane-potentials and sodium-channels - hypotheses for growth-regulation and cancer formation based on changes in sodium-channels and gap-junctions. J. Theor. Biol. 123, 377–401 (1986). PubMed

Pauling L. & Coryell C. D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. P. Natl. Acad. Sci. USA 22, 210–216 (1936). PubMed PMC

Tikhonov V. I. & Volkov A. A. Separation of water into its ortho and para isomers. Science 296, 2363–2363 (2002). PubMed

Armstrong C. M. & Hille B. Voltage-gated ion channels and electrical excitability. Neuron 20, 371–380 (1998). PubMed

Dempsey N. M. et al.. Micro-magnetic imprinting of high field gradient magnetic flux sources. Appl. Phys. Lett. 104, 262401 (2014).

Zablotskii V., Syrovets T., Schmidt Z. W., Dejneka A. & Simmet T. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies. Biomaterials 35, 3164–3171 (2014). PubMed

Cervera J., Alcaraz A. & Mafe S. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics. Sci. Rep. 6, 20403 (2016). PubMed PMC

Treger J. S., Priest M. F.& Bezanilla F. Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator. eLife 4, e10482 (2015). PubMed PMC

Accardi A. Lipids link ion channels and cancer Membrane voltage connects lipid organization to cell proliferation. Science 349, 789–790 (2015). PubMed PMC

Binggeli R., Weinstein R. C. & Stevenson D. Calcium-ion and the membrane-potential of tumor-cells. Cancer Biochem. Bioph. 14, 201–210 (1994). PubMed

Sundelacruz S., Levin M. & Kaplan D. L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3, e3737 (2008). PubMed PMC

Strahl H. & Hamoen L. W. Membrane potential is important for bacterial cell division. P. Natl. Acad. Sci. USA. 107, 12281–12286 (2010). PubMed PMC

Kinouchi Y. et al.. Effects of static magnetic fields on diffusion in solutions. Bioelectromagnetics 9, 159–166 (1988). PubMed

Hughes S., McBain S., Dobson J. & El Haj A. J. Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface 5, 855–863 (2008). PubMed PMC

Christensen A. P. & Corey D. P. TRP channels in mechanosensation: direct or indirect activation? Nat. Rev. Neurosci. 8, 510–521 (2007). PubMed

Sachs F. Modeling mechanical-electrical transduction in the heart. Cell Mechanics and Cellular Engineering, 308–328 (1994).

Zabel M., Koller B. S., Sachs F. & Franz M. R. Stretch-induced voltage changes in the isolated beating heart: Importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc. Res. 32, 120–130 (1996). PubMed

Bialecka-Fornal M., Lee H. J., DeBerg H. A., Gandhi C. S. & Phillips R. Single-cell census of mechanosensitive channels in living bacteria. PLoS One 7, e33077 (2012). PubMed PMC

Shen B. et al.. Plasma membrane mechanical stress activates TRPC5 channels. PLoS One 10, e0122227 (2015). PubMed PMC

Zablotskii V. et al.. Life on magnets: stem cell networking on micro-magnet arrays. PLoS One 8, e70416 (2013). PubMed PMC

Herranz R. et al.. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 13, 52 (2012). PubMed PMC

Haisler W. L. et al.. Three-dimensional cell culturing by magnetic levitation. Nat. Protoc. 8, 1940–1949 (2013). PubMed

Zablotskii V. et al.. Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration. Appl. Phys. Lett. 105, 103702 (2014).

Sapir-Lekhovitser Y. et al.. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. Nanoscale 8, 3386–3399 (2016). PubMed PMC

Tay A., Kunze A., Murray C. & Di Carlo D. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 10, 2331–2341 (2016). PubMed

Jin X. X., Chalmers J. J. & Zborowski M. Iron transport in cancer cell culture suspensions measured by cell magnetophoresis. Anal. Chem. 84, 4520–4526 (2012). PubMed PMC

Mutschke G. et al.. On the action of magnetic gradient forces in micro-structured copper deposition. Electrochim. Acta 55, 9060–9066 (2010).

Dunne P., Mazza L. & Coey J. M. D. Magnetic structuring of electrodeposits. Phys. Rev. Lett. 107, 024501 (2011). PubMed

Zablotskii V. et al.. High-field gradient permanent micromagnets for targeted drug delivery with magnetic nanoparticles. AIP Conf. Proc. 1311, 152–157 (2010).

Guilak F. et al.. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009). PubMed PMC

He X. & Yablonskiy D. A. Biophysical mechanisms of phase contrast in gradient echo MRI. P. Natl. Acad. Sci. USA 106, 13558–13563 (2009). PubMed PMC

Tseng P., Judy J. W. & Di Carlo D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods 9, 1113–1119 (2012). PubMed PMC

Hubert A. & Schäfer R. Magnetic domains: the analysis of magnetic microstructures. (Springer, 1998).

Stewart M. P. et al.. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011). PubMed

Montel F. et al.. Stress Clamp Experiments on Multicellular Tumor Spheroids. Phys. Rev. Lett. 107, 188102 (2011). PubMed

Brem F. et al.. Magnetic iron compounds in the human brain: a comparison of tumour and hippocampal tissue. J. R. Soc. Interface 3, 833–841 (2006). PubMed PMC

Karp G. & Geer P. v. d. Cell and molecular biology: concepts and experiments. (John Wiley, 2005).

Brangwynne C. P., Koenderink G. H., MacKintosh F. C. & Weitz D. A. Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys. Rev. Lett. 100, 118104 (2008). PubMed

Brangbour C. et al.. Force-velocity measurements of a few growing actin filaments. PLoS Biol. 9, e1000613 (2011). PubMed PMC

Krishnan K. M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 46, 2523–2558 (2010). PubMed PMC

Kim D. H. et al.. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9, 165–171 (2010). PubMed PMC

Cugat O., Delamare J. & Reyne G. Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn. 39, 3607–3612 (2003).

Joseph R. I. & Schloman. E. Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 36, 1579 (1965).

Thiaville A., Tomáš D. & Miltat J. On corner singularities in micromagnetics. Phys. Status Solidi A-Appl. Mat. 170, 125–135 (1998).

Samofalov V. N., Belozorov D. P. & Ravlik A. G. Strong stray fields in systems of giant magnetic anisotropy magnets. Phys. Usp. 56, 269–288 (2013).

Pivetal J. et al.. Micro-magnet arrays for specific single bacterial cell positioning. J. Magn. Magn. Mater. 380, 72–77 (2015).

de Vries A. H. B., Krenn B. E., van Driel R. & Kanger J. S. Micro magnetic tweezers for nanomanipulation inside live cells. Biophys. J. 88, 2137–2144 (2005). PubMed PMC

Blinder S. M. Magnetic field of a cylindrical bar magnet, http://demonstrations.wolfram.com/MagneticFieldOfACylindricalBarMagnet/ (2011).

Zablotskii V. et al.. Nanomechanics of magnetically driven cellular endocytosis. Appl. Phys. Lett. 99, 183701 (2011).

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...