How a High-Gradient Magnetic Field Could Affect Cell Life
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27857227
PubMed Central
PMC5114642
DOI
10.1038/srep37407
PII: srep37407
Knihovny.cz E-resources
- MeSH
- Electromagnetic Fields * MeSH
- Stem Cells radiation effects MeSH
- Humans MeSH
- Magnetic Field Therapy * MeSH
- Membrane Potentials radiation effects MeSH
- Nanomedicine MeSH
- Models, Theoretical MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.
See more in PubMed
Cho M. H. et al.. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nat. Mater. 11, 1038–1043 (2012). PubMed
Qin S. et al.. A magnetic protein biocompass. Nat. Mater. 15, 217–226 (2016). PubMed
Dobson J. Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol. 3, 139–143 (2008). PubMed
Saunders R. Static magnetic fields: animal studies. Prog. Biophys. Mol. Bio. 87, 225–239 (2005). PubMed
Rosen A. D. Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39, 163–173 (2003). PubMed
Pazur A., Schimek C. & Galland P. Magnetoreception in microorganisms and fungi. Cent. Eur. J. Biol. 2, 597–659 (2007).
Dini L. & Abbro L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36, 195–217 (2005). PubMed
Zhou S. A. & Uesaka M. Bioelectrodynamics in living organisms. Int. J. Eng. Sci. 44, 67–92 (2006).
Funk R. H. W., Monsees T. & Ozkucur N. Electromagnetic effects - From cell biology to medicine. Prog. Histochem. Cyto. 43, 177–264 (2009). PubMed
Miyakoshi J. Effects of static magnetic fields at the cellular level. Prog. Biophys. Mol. Bio. 87, 213–223 (2005). PubMed
Di S. M. et al.. Large gradient high magnetic field affects FLG29.1 cells differentiation to form osteoclast-like cells. Int. J. Radiat. Biol. 88, 806–813 (2012). PubMed
Qian A. R. et al.. Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/alpha beta 1 integrin. PLoS One 8, e51036 (2013). PubMed PMC
Neurath P. W. High gradient magnetic field inhibits embryonic development of frogs. Nature 219, 1358–1359 (1968). PubMed
Schenck J. F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23, 815–850 (1996). PubMed
Timonen J. V. I., Latikka M., Leibler L., Ras R. H. A. & Ikkala O. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science 341, 253–257 (2013). PubMed
Dumas-Bouchiat F. et al.. Thermomagnetically patterned micromagnets. Appl. Phys. Lett. 96, 102511 (2010).
Osman O. et al.. Microfluidic immunomagnetic cell separation using integrated permanent micromagnets. Biomicrofluidics 7, 054115 (2013). PubMed PMC
Osman O. et al.. Monitoring the endocytosis of magnetic nanoparticles by cells using permanent micro-flux sources. Biomed. Microdevices 14, 947–954 (2012). PubMed
Zanini L. F., Dempsey N. M., Givord D., Reyne G. & Dumas-Bouchiat F. Autonomous micro-magnet based systems for highly efficient magnetic separation. Appl. Phys. Lett. 99, 232504 (2011).
Zanini L. F. et al.. Micromagnet structures for magnetic positioning and alignment. J. Appl. Phys. 111, 07b312 (2012).
Cohen A. E. Nanomagnetic control of intersystem crossing. Journal of Physical Chemistry A 113, 11084–11092 (2009). PubMed
Cai J. M. Quantum probe and design for a chemical compass with magnetic nanostructures. Phys. Rev. Lett. 106, 100501 (2011). PubMed
Law K. F. F. et al.. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Appl. Phys. Lett. 108, 091104 (2016).
Phillips R. & Quake S. R. The biological frontier of physics. Phys. Today 59, 38–43 (2006).
Higgs P. G. & Joanny J. F. Enhanced membrane rigidity in charged lamellar phases. J. Phys-Paris 51, 2307–2320 (1990).
Levin M. & Stevenson C. G. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering. Annu. Rev. Biomed. Eng. 14, 295–323 (2012). PubMed PMC
Binggeli R. & Weinstein R. C. Membrane-potentials and sodium-channels - hypotheses for growth-regulation and cancer formation based on changes in sodium-channels and gap-junctions. J. Theor. Biol. 123, 377–401 (1986). PubMed
Pauling L. & Coryell C. D. The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. P. Natl. Acad. Sci. USA 22, 210–216 (1936). PubMed PMC
Tikhonov V. I. & Volkov A. A. Separation of water into its ortho and para isomers. Science 296, 2363–2363 (2002). PubMed
Armstrong C. M. & Hille B. Voltage-gated ion channels and electrical excitability. Neuron 20, 371–380 (1998). PubMed
Dempsey N. M. et al.. Micro-magnetic imprinting of high field gradient magnetic flux sources. Appl. Phys. Lett. 104, 262401 (2014).
Zablotskii V., Syrovets T., Schmidt Z. W., Dejneka A. & Simmet T. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies. Biomaterials 35, 3164–3171 (2014). PubMed
Cervera J., Alcaraz A. & Mafe S. Bioelectrical Signals and Ion Channels in the Modeling of Multicellular Patterns and Cancer Biophysics. Sci. Rep. 6, 20403 (2016). PubMed PMC
Treger J. S., Priest M. F.& Bezanilla F. Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator. eLife 4, e10482 (2015). PubMed PMC
Accardi A. Lipids link ion channels and cancer Membrane voltage connects lipid organization to cell proliferation. Science 349, 789–790 (2015). PubMed PMC
Binggeli R., Weinstein R. C. & Stevenson D. Calcium-ion and the membrane-potential of tumor-cells. Cancer Biochem. Bioph. 14, 201–210 (1994). PubMed
Sundelacruz S., Levin M. & Kaplan D. L. Membrane potential controls adipogenic and osteogenic differentiation of mesenchymal stem cells. PLoS One 3, e3737 (2008). PubMed PMC
Strahl H. & Hamoen L. W. Membrane potential is important for bacterial cell division. P. Natl. Acad. Sci. USA. 107, 12281–12286 (2010). PubMed PMC
Kinouchi Y. et al.. Effects of static magnetic fields on diffusion in solutions. Bioelectromagnetics 9, 159–166 (1988). PubMed
Hughes S., McBain S., Dobson J. & El Haj A. J. Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface 5, 855–863 (2008). PubMed PMC
Christensen A. P. & Corey D. P. TRP channels in mechanosensation: direct or indirect activation? Nat. Rev. Neurosci. 8, 510–521 (2007). PubMed
Sachs F. Modeling mechanical-electrical transduction in the heart. Cell Mechanics and Cellular Engineering, 308–328 (1994).
Zabel M., Koller B. S., Sachs F. & Franz M. R. Stretch-induced voltage changes in the isolated beating heart: Importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc. Res. 32, 120–130 (1996). PubMed
Bialecka-Fornal M., Lee H. J., DeBerg H. A., Gandhi C. S. & Phillips R. Single-cell census of mechanosensitive channels in living bacteria. PLoS One 7, e33077 (2012). PubMed PMC
Shen B. et al.. Plasma membrane mechanical stress activates TRPC5 channels. PLoS One 10, e0122227 (2015). PubMed PMC
Zablotskii V. et al.. Life on magnets: stem cell networking on micro-magnet arrays. PLoS One 8, e70416 (2013). PubMed PMC
Herranz R. et al.. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Genomics 13, 52 (2012). PubMed PMC
Haisler W. L. et al.. Three-dimensional cell culturing by magnetic levitation. Nat. Protoc. 8, 1940–1949 (2013). PubMed
Zablotskii V. et al.. Down-regulation of adipogenesis of mesenchymal stem cells by oscillating high-gradient magnetic fields and mechanical vibration. Appl. Phys. Lett. 105, 103702 (2014).
Sapir-Lekhovitser Y. et al.. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. Nanoscale 8, 3386–3399 (2016). PubMed PMC
Tay A., Kunze A., Murray C. & Di Carlo D. Induction of calcium influx in cortical neural networks by nanomagnetic forces. ACS Nano 10, 2331–2341 (2016). PubMed
Jin X. X., Chalmers J. J. & Zborowski M. Iron transport in cancer cell culture suspensions measured by cell magnetophoresis. Anal. Chem. 84, 4520–4526 (2012). PubMed PMC
Mutschke G. et al.. On the action of magnetic gradient forces in micro-structured copper deposition. Electrochim. Acta 55, 9060–9066 (2010).
Dunne P., Mazza L. & Coey J. M. D. Magnetic structuring of electrodeposits. Phys. Rev. Lett. 107, 024501 (2011). PubMed
Zablotskii V. et al.. High-field gradient permanent micromagnets for targeted drug delivery with magnetic nanoparticles. AIP Conf. Proc. 1311, 152–157 (2010).
Guilak F. et al.. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5, 17–26 (2009). PubMed PMC
He X. & Yablonskiy D. A. Biophysical mechanisms of phase contrast in gradient echo MRI. P. Natl. Acad. Sci. USA 106, 13558–13563 (2009). PubMed PMC
Tseng P., Judy J. W. & Di Carlo D. Magnetic nanoparticle-mediated massively parallel mechanical modulation of single-cell behavior. Nat. Methods 9, 1113–1119 (2012). PubMed PMC
Hubert A. & Schäfer R. Magnetic domains: the analysis of magnetic microstructures. (Springer, 1998).
Stewart M. P. et al.. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011). PubMed
Montel F. et al.. Stress Clamp Experiments on Multicellular Tumor Spheroids. Phys. Rev. Lett. 107, 188102 (2011). PubMed
Brem F. et al.. Magnetic iron compounds in the human brain: a comparison of tumour and hippocampal tissue. J. R. Soc. Interface 3, 833–841 (2006). PubMed PMC
Karp G. & Geer P. v. d. Cell and molecular biology: concepts and experiments. (John Wiley, 2005).
Brangwynne C. P., Koenderink G. H., MacKintosh F. C. & Weitz D. A. Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys. Rev. Lett. 100, 118104 (2008). PubMed
Brangbour C. et al.. Force-velocity measurements of a few growing actin filaments. PLoS Biol. 9, e1000613 (2011). PubMed PMC
Krishnan K. M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans. Magn. 46, 2523–2558 (2010). PubMed PMC
Kim D. H. et al.. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction. Nat. Mater. 9, 165–171 (2010). PubMed PMC
Cugat O., Delamare J. & Reyne G. Magnetic micro-actuators and systems (MAGMAS). IEEE Trans. Magn. 39, 3607–3612 (2003).
Joseph R. I. & Schloman. E. Demagnetizing field in nonellipsoidal bodies. J. Appl. Phys. 36, 1579 (1965).
Thiaville A., Tomáš D. & Miltat J. On corner singularities in micromagnetics. Phys. Status Solidi A-Appl. Mat. 170, 125–135 (1998).
Samofalov V. N., Belozorov D. P. & Ravlik A. G. Strong stray fields in systems of giant magnetic anisotropy magnets. Phys. Usp. 56, 269–288 (2013).
Pivetal J. et al.. Micro-magnet arrays for specific single bacterial cell positioning. J. Magn. Magn. Mater. 380, 72–77 (2015).
de Vries A. H. B., Krenn B. E., van Driel R. & Kanger J. S. Micro magnetic tweezers for nanomanipulation inside live cells. Biophys. J. 88, 2137–2144 (2005). PubMed PMC
Blinder S. M. Magnetic field of a cylindrical bar magnet, http://demonstrations.wolfram.com/MagneticFieldOfACylindricalBarMagnet/ (2011).
Zablotskii V. et al.. Nanomechanics of magnetically driven cellular endocytosis. Appl. Phys. Lett. 99, 183701 (2011).
Gradient Magnetic Field Accelerates Division of E. coli Nissle 1917