Effect of static magnetic field on DNA synthesis: The interplay between DNA chirality and magnetic field left-right asymmetry
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32259051
PubMed Central
PMC7133733
DOI
10.1096/fba.2019-00045
PII: FBA21118
Knihovny.cz E-zdroje
- Klíčová slova
- DNA synthesis, biomagnetic effects, homochirality, left-right asymmetry, magnetic field,
- Publikační typ
- časopisecké články MeSH
Interactions between magnetic fields (MFs) and living cells may stimulate a large variety of cellular responses to a MF, while the underlying intracellular mechanisms still remain a great puzzle. On a fundamental level, the MF - cell interaction is affected by the two broken symmetries: (a) left-right (LR) asymmetry of the MF and (b) chirality of DNA molecules carrying electric charges and subjected to the Lorentz force when moving in a MF. Here we report on the chirality-driven effect of static magnetic fields (SMFs) on DNA synthesis. This newly discovered effect reveals how the interplay between two fundamental features of symmetry in living and inanimate nature-DNA chirality and the inherent features of MFs to distinguish the left and right-manifests itself in different DNA synthesis rates in the upward and downward SMFs, consequently resulting in unequal cell proliferation for the two directions of the field. The interplay between DNA chirality and MF LR asymmetry will provide fundamental knowledge for many MF-induced biological phenotypes.
Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
Institutes of Physical Science and Information Technology Anhui University Hefei China
Science Island Branch of Graduate School University of Science and Technology of China Hefei China
Zobrazit více v PubMed
Dini L, Abbro L. Bioeffects of moderate‐intensity static magnetic fields on cell cultures. Micron. 2005;36:195–217. PubMed
Zhang X, Yarema K, Xu A. Impact of static magnetic fields (SMFs) on cells In: Biological Effects of Static Magnetic Fields. Singapore, Singapore: Springer Singapore; 2017:81–131.
Hore PJ. Are biochemical reactions affected by weak magnetic fields? Proc Natl Acad Sci USA. 2012;109:1357–1358. PubMed PMC
Nordmann GC, Hochstoeger T, Keays DA. Magnetoreception—a sense without a receptor. PLoS Biol. 2017;15:e2003234. PubMed PMC
Sherrard RM, Morellini N, Jourdan N, et al. Low‐intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species. PLoS Biol. 2018;16:e2006229. PubMed PMC
Zablotskii V, Syrovets T, Schmidt ZW, Dejneka A, Simmet T. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies. Biomaterials. 2014;35:3164–3171. PubMed
Rubio Ayala M, Syrovets T, Hafner S, Zablotskii V, Dejneka A, Simmet T. Spatiotemporal magnetic fields enhance cytosolic Ca2+ levels and induce actin polymerization via activation of voltage‐gated sodium channels in skeletal muscle cells. Biomaterials. 2018;163:174–184. PubMed
Zablotskii V, Polyakova T, Lunov O, Dejneka A. How a high‐gradient magnetic field could affect cell life. Sci Rep. 2016;6:37407. PubMed PMC
Blackmond DG. The origin of biological homochirality. Cold Spring Harbor Perspect Biol. 2019;11:a032540. PubMed PMC
Karunakaran SC, Cafferty BJ, Weigert‐Munoz A, Schuster GB, Hud NV. Spontaneous symmetry breaking in the formation of supramolecular polymers: implications for the origin of biological homochirality. Angew Chem Int Ed. 2019;58:1453–1457. PubMed
Vester F, Ulbricht TLV, Krauch H. Optische Aktivität und die Paritätsverletzung im β‐Zerfall. Naturwissenschaften. 1959;46:68–68.
Ulbricht TLV, Vester F. Attempts to induce optical activity with polarized β‐radiation. Tetrahedron. 1962;18:629–637.
Timsit Y. DNA self‐assembly: from chirality to evolution. Int J Mol Sci. 2013;14:8252–8270. PubMed PMC
Timsit Y. Local sensing of global DNA topology: from crossover geometry to type II topoisomerase processivity. Nucleic Acids Res. 2011;39:8665–8676. PubMed PMC
Joyce GF, Visser GM, van Boeckel CAA, van Boom JH, Orgel LE, van Westrenen J. Chiral selection in poly(C)‐directed synthesis of oligo(G). Nature. 1984;310:602–604. PubMed
Wan LQ, Ronaldson K, Guirguis M, Vunjak‐Novakovic G. Micropatterning of cells reveals chiral morphogenesis. Stem Cell Res Ther. 2013;4:24. PubMed PMC
Levin M. Left–right asymmetry in embryonic development: a comprehensive review. Mech Dev. 2005;122:3–25. PubMed
Wan LQ, Chin AS, Worley KE, Ray P. Cell chirality: emergence of asymmetry from cell culture. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150413. PubMed PMC
Chin AS, Worley KE, Ray P, Kaur G, Fan J, Wan LQ. Epithelial cell chirality revealed by three‐dimensional spontaneous rotation. Proc Natl Acad Sci USA. 2018;115:12188–12193. PubMed PMC
Tamada A, Igarashi M. Revealing chiral cell motility by 3D Riesz transform‐differential interference contrast microscopy and computational kinematic analysis. Nat Commun. 2017;8:2194. PubMed PMC
Xu J, Van Keymeulen A, Wakida NM, Carlton P, Berns MW, Bourne HR. Polarity reveals intrinsic cell chirality. Proc Natl Acad Sci USA. 2007;104:9296–9300. PubMed PMC
Wan LQ, Ronaldson K, Park M, et al. Micropatterned mammalian cells exhibit phenotype‐specific left‐right asymmetry. Proc Natl Acad Sci USA. 2011;108:12295–12300. PubMed PMC
Novak M, Polak B, Simunić J, et al. The mitotic spindle is chiral due to torques within microtubule bundles. Nat Commun. 2018;9:3571. PubMed PMC
Kizel' VA. Optical activity and dissymmetry in living systems. Soviet Physics Uspekhi. 1980;23:277–295.
Arnheim R. Art and visual perception. Berkeley, Los Angeles, CA: Univ. of California Press, Berkeley; 1974.
Huxley JS, de Beer GR. The elements of experimental embryology. Cambridge University Press; 2015.
Oliveira FTP, Diedrichsen J, Verstynen T, Duque J, Ivry RB. Transcranial magnetic stimulation of posterior parietal cortex affects decisions of hand choice. Proc Natl Acad Sci USA. 2010;107:17751–17756. PubMed PMC
Wang CX, Hilburn IA, Wu D‐A, et al. Transduction of the geomagnetic field as evidenced from alpha‐band activity in the human brain. eNeuro. 2019;6(2):0483–18. PubMed PMC
Tian X, Wang D, Zha M, et al. Magnetic field direction differentially impacts the growth of different cell types. Electromagn Biol Med. 2018;37:114–125. PubMed
Keszthelyi A, Minchell NE, Baxter J. The causes and consequences of topological stress during DNA replication. Genes. 2016;7:134. PubMed PMC
Thomen P, Bockelmann U, Heslot F. Rotational drag on DNA: a single molecule experiment. Phys Rev Lett. 2002;88:248102. PubMed
Nelson P. Transport of torsional stress in DNA. Proc Natl Acad Sci USA. 1999;96:14342–14347. PubMed PMC
Lipfert J, Doniach S, Das R, Herschlag D. Understanding nucleic acid‐ion interactions. Annu Rev Biochem. 2014;83:813–841. PubMed PMC
Gebala M, Johnson SL, Narlikar GJ, Herschlag D. Ion counting demonstrates a high electrostatic field generated by the nucleosome. eLife. 2019;8:e44993. PubMed PMC
Zablotskii V, Lunov O, Novotna B, et al. Down‐regulation of adipogenesis of mesenchymal stem cells by oscillating high‐gradient magnetic fields and mechanical vibration. Appl Phys Lett. 2014;105:103702.
Yuya T, Machiko I, Yasunari A, Taiki Y, Akihiko T. Spectroscopic visualization of right‐ and left‐handed helical alignments of DNA in chiral vortex flows. Bull Chem Soc Jpn. 2011;84:1031–1038.
van Zon W, Ogink J, ter Riet B, Medema RH, te Riele H, Wolthuis RMF. The APC/C recruits cyclin B1–Cdk1–Cks in prometaphase before D box recognition to control mitotic exit. J Cell Biol. 2010;190:587–602. PubMed PMC
Harley ME, Allan LA, Sanderson HS, Clarke PR. Phosphorylation of Mcl‐1 by CDK1–cyclin B1 initiates its Cdc20‐dependent destruction during mitotic arrest. EMBO J. 2010;29:2407–2420. PubMed PMC
Zablotskii V, Polyakova T, Dejneka A. Cells in the non‐uniform magnetic world: how cells respond to high‐gradient magnetic fields. BioEssays. 2018;40:1800017. PubMed
Jossé R, Martin SE, Guha R, et al. ATR inhibitors VE‐821 and VX‐970 sensitize cancer cells to topoisomerase I Inhibitors by disabling DNA replication initiation and fork elongation responses. Cancer Res. 2014;74: 6968–6979. PubMed PMC
Sheraz M, Cheng J, Tang L, Chang J, Guo J‐T. Cellular DNA topoisomerases are required for the synthesis of hepatitis B virus covalently closed circular DNA. J Virol. 2019;93:e02230‐18. PubMed PMC
Śmiałek MA, Jones NC, Hoffmann SV, Mason NJ. Measuring the density of DNA films using ultraviolet‐visible interferometry. Phys Rev E. 2013;87:060701. PubMed
Gueron M, Demaret JP. A simple explanation of the electrostatics of the B‐to‐Z transition of DNA. Proc Natl Acad Sci USA. 1992;89:5740–5743. PubMed PMC
Kominami H, Kobayashi K, Yamada H. Molecular‐scale visualization and surface charge density measurement of Z‐DNA in aqueous solution. Sci Rep. 2019;9:6851. PubMed PMC
Méchali M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol. 2010;11:728–738. PubMed
Koster DA, Crut A, Shuman S, Bjornsti M‐A, Dekker NH. Cellular strategies for regulating DNA supercoiling: a single‐molecule perspective. Cell. 2010;142:519–530. PubMed PMC
Levinthal C, Crane HR. ON the unwinding of DNA. Proc Natl Acad Sci USA. 1956;42:436–438. PubMed PMC
Koster DA, Croquette V, Dekker C, Shuman S, Dekker NH. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature. 2005;434:671–674. PubMed
Mirkin EV, Mirkin SM. Replication fork stalling at natural impediments. Microbiol Mol Biol Rev. 2007;71:13–35. PubMed PMC
Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 2002;3:430–440. PubMed
McClendon AK, Rodriguez AC, Osheroff N. Human topoisomerase iiα rapidly relaxes positively supercoiled DNA: implications for enzyme action ahead of replication forks. J Biol Chem. 2005;280:39337–39345. PubMed
Koster DA, Palle K, Bot ESM, Bjornsti M‐A, Dekker NH. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature. 2007;448: 213–217. PubMed
Timsit Y, Várnai P. Helical chirality: a link between local interactions and global topology in DNA. PLoS ONE. 2010;5:e9326. PubMed PMC
Bizzarri M, Masiello MG, Giuliani A, Cucina A. Gravity constraints drive biological systems toward specific organization patterns. BioEssays. 2018;40:1700138. PubMed
Lee J‐H, Kim D‐H, Lee H‐H, Kim H‐W. Role of nuclear mechanosensitivity in determining cellular responses to forces and biomaterials. Biomaterials. 2019;197:60–71. PubMed
Denegre JM, Valles JM, Lin K, Jordan WB, Mowry KL. Cleavage planes in frog eggs are altered by strong magnetic fields. Proc Natl Acad Sci USA. 1998;95:14729–14732. PubMed PMC
Thiel CS, Hauschild S, Huge A, et al. Dynamic gene expression response to altered gravity in human T cells. Sci Rep. 2017;7:5204. PubMed PMC
Su S‐H, Gibbs NM, Jancewicz AL, Masson PH. Molecular mechanisms of root gravitropism. Curr Biol. 2017;27:R964–R972. PubMed
Jin Y, Guo W, Hu X, et al. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Sci Rep. 2019;9:14384. PubMed PMC
Maret G, Schickfus MV, Mayer A, Dransfeld K. Orientation of nucleic acids in high magnetic fields. Phys Rev Lett. 1975;35:397–400.
Zhao Y, Zhan Q. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis. Theor Biol Med Model. 2012;9:26. PubMed PMC
Maret G. Recent biophysical studies in high magnetic fields. Physica B. 1990;164:205–212.
Zhang L, Hou Y, Li Z, et al. 27 T ultra‐high static magnetic field changes orientation and morphology of mitotic spindles in human cells. eLife. 2017;6:e22911. PubMed PMC
Le TT, Gao X, Park SH, et al. Synergistic coordination of chromatin torsional mechanics and topoisomerase activity. Cell. 2019;179:619–631. PubMed PMC
Zhang L, Ji XM, Yang XX, Zhang X. Cell type‐ and density‐dependent effect of 1 T static magnetic field on cell proliferation. Oncotarget. 2017;8:13126–13141. PubMed PMC
Luo Y, Ji XM, Liu JJ, et al. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5‐FU and Taxol. Bioelectrochemistry. 2016;109:31–40. PubMed
Zhang L, Yang X, Liu J, et al. 1 T moderate intensity static magnetic field affects Akt/mTOR pathway and increases the antitumor efficacy of mTOR inhibitors in CNE‐2Z cells. Sci Bull. 2015;60:2120–2128.
Tian X, Wang D, Zha M, et al. Magnetic field direction differentially impacts the growth of different cell types. Electromagn Biol Med. 2018;37:114–125. PubMed
Famiano MA, Boyd RN, Kajino T, Onaka T. Selection of amino acid chirality via neutrino interactions with 14N in crossed electric and magnetic fields. Astrobiology. 2018;18:190–206. PubMed PMC
Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules