Cardiorenal Syndromes and Their Role in Water and Sodium Homeostasis

. 2024 Apr 30 ; 73 (2) : 173-187.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38710052

Sodium is the main osmotically active ion in the extracellular fluid and its concentration goes hand in hand with fluid volume. Under physiological conditions, homeostasis of sodium and thus amount of fluid is regulated by neural and humoral interconnection of body tissues and organs. Both heart and kidneys are crucial in maintaining volume status. Proper kidney function is necessary to excrete regulated amount of water and solutes and adequate heart function is inevitable to sustain renal perfusion pressure, oxygen supply etc. As these organs are bidirectionally interconnected, injury of one leads to dysfunction of another. This condition is known as cardiorenal syndrome. It is divided into five subtypes regarding timeframe and pathophysiology of the onset. Hemodynamic effects include congestion, decreased cardiac output, but also production of natriuretic peptides. Renal congestion and hypoperfusion leads to kidney injury and maladaptive activation of renin-angiotensin-aldosterone system and sympathetic nervous system. In cardiorenal syndromes sodium and water excretion is impaired leading to volume overload and far-reaching negative consequences, including higher morbidity and mortality of these patients. Keywords: Cardiorenal syndrome, Renocardiac syndrome, Volume overload, Sodium retention.

Zobrazit více v PubMed

Jalloh MB, Granger CB, Fonarow GC, Van Spall HGC. Multi-level implementation strategies to improve uptake of evidence-based therapies in heart failure. Eur Heart J. 2023;44:2055–2058. doi: 10.1093/eurheartj/ehad150. PubMed DOI

Ronco C, House AA, Haapio M. Cardiorenal syndrome: refining the definition of a complex symbiosis gone wrong. Intensive Care Med. 2008;34:957–962. doi: 10.1007/s00134-008-1017-8. PubMed DOI

Miller WL. Fluid volume overload and congestion in heart failure: time to reconsider pathophysiology and how volume is assessed. Circ Heart Fail. 2016;9:e002922. doi: 10.1161/CIRCHEARTFAILURE.115.002922. PubMed DOI

Oikonomou E, Zografos T, Papamikroulis GA, Siasos G, Vogiatzi G, Theofilis P, Briasoulis A, Papaioannou S, Vavuranakis M, Gennimata V, Tousoulis D. Biomarkers in atrial fibrillation and heart failure. Curr Med Chem. 2019;26:873–887. doi: 10.2174/0929867324666170830100424. PubMed DOI

Valentova M, von Haehling S, Bauditz J, Doehner W, Ebner N, Bekfani T, Elsner S, Sliziuk V, Scherbakov N, Murín J, Anker SD, Sandek A. Intestinal congestion and right ventricular dysfunction: a link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur Heart J. 2016;37:1684–1691. doi: 10.1093/eurheartj/ehw008. PubMed DOI

Murray JF. Pulmonary edema: pathophysiology and diagnosis. Int J Tuberc Lung Dis. 2011;15(2):155–160. doi: 10.5588/ijtld.11.0324-2. PubMed DOI

Agnoli GC, Garutti C. Renal water-electrolyte excretion and its control mechanisms. Current status of knowledge. Minerva Med. 1976;67(56):3673–702. PubMed

Levey AS, Inker AL, Coresh J. GFR estimation: from physiology to public health. Am J Kidney Dis. 2014;63(5):820–34. doi: 10.1053/j.ajkd.2013.12.006. PubMed DOI PMC

Knepper MA, Saidel GM, Hascall VC, Dwyer T. Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer [published correction appears in Am J Physiol Renal Physiol 2005 Jul;289(1):F225] Am J Physiol Renal Physiol. 2003;284:F433–F446. doi: 10.1152/ajprenal.00067.2002. PubMed DOI

Kaufman DP, Basit H, Knohl SJ. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Physiology, Glomerular Filtration Rate 2022. PubMed

Pallone TL, Turner MR, Edwards A, Jamison RL. Countercurrent exchange in the renal medulla. Am J Physiol Regul Integr Comp Physiol. 2003;284(5):R1153–R1175. doi: 10.1152/ajpregu.00657.2002. PubMed DOI

Danziger J, Zeidel ML. Osmotic homeostasis. Clin J Am Soc Nephrol. 2015;10(5):852–862. doi: 10.2215/CJN.10741013. PubMed DOI PMC

Nielsen S, Frøkiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–244. doi: 10.1152/physrev.00024.2001. PubMed DOI

Vermette D, Hu P, Canarie MF, Funaro M, Glover J, Pierce RW. Tight junction structure, function, and assessment in the critically ill: a systematic review. Intensive Care Med Exp. 2018;6:37. doi: 10.1186/s40635-018-0203-4. PubMed DOI PMC

Linden RJ. Function of cardiac receptors. Circulation. 1973;48:463–480. doi: 10.1161/01.CIR.48.3.463. PubMed DOI

Paintal AS. Vagal afferent fibres. Ergeb Physiol. 1963;52:74–156. doi: 10.1007/978-3-642-49896-1_3. PubMed DOI

Recordati G, Lombardi F, Bishop VS, Malliani A. Mechanical stimuli exciting type A atrial vagal receptors in the cat. Circ Res. 1976;38(5):397–403. doi: 10.1161/01.RES.38.5.397. PubMed DOI

Paintal AS. Natural stimulation of type B atrial receptors. J Physiol. 1963;169:116–136. doi: 10.1113/jphysiol.1963.sp007244. PubMed DOI PMC

Hainsworth R. Sensory functions of the heart. Ann Acad Med Singap. 1994;23:546–551. PubMed

Longhurst JC. Cardiac receptors: their function in health and disease. Prog Cardiovasc Dis. 1984;27:201–222. doi: 10.1016/0033-0620(84)90005-7. PubMed DOI

Sleight P, Widdicombe JG. Action potentials in afferent fibres from pericardial mechanoreceptors in the dog. J Physiol. 1965;181:259–269. doi: 10.1113/jphysiol.1965.sp007758. PubMed DOI PMC

Oberg B, Thorén P. Circulatory responses to stimulation of left ventricular receptors in the cat. Acta Physiol Scand. 1973;88(1):8–22. doi: 10.1111/j.1748-1716.1973.tb05429.x. PubMed DOI

Thorén PN. Atrial receptors with nonmedullated vagal afferents in the cat. Discharge frequency and pattern in relation to atrial pressure. Circ Res. 1976;38:357–362. doi: 10.1161/01.RES.38.5.357. PubMed DOI

Malliani A, Parks M, Tuckett RP, Brown AM. Reflex increases in heart rate elicited by stimulation of afferent cardiac sympathetic nerve fibers in the cat. Circ Res. 1973;32:9–14. PubMed

Ueda H, Uchida Y, Kamisaka K. Distribution and responses of the cardiac sympathetic receptors to mechanically induced circulatory changes. Jpn Heart J. 1969;10:70–81. doi: 10.1536/ihj.10.70. PubMed DOI

Coleridge HM, Coleridge JC. Cardiovascular afferents involved in regulation of peripheral vessels. Annu Rev Physiol. 1980;42:413–427. doi: 10.1146/annurev.ph.42.030180.002213. PubMed DOI

Malliani A, Recordati G, Schwartz PJ. Nervous activity of afferent cardiac sympathetic fibres with atrial and ventricular endings. J Physiol. 1973;229:457–469. doi: 10.1113/jphysiol.1973.sp010147. PubMed DOI PMC

Peterson DF, Brown AM. Pressor reflexes produced by stimulation of afferent fibers in the cardiac sympathetic nerves of the cat. Circ Res. 1971;28(6):605–610. doi: 10.1161/01.RES.28.6.605. PubMed DOI

Pagani M, Schwartz PJ, Banks R, Lombardi F, Malliani A. Reflex responses of sympathetic preganglionic neurones initiated by different cardiovascular receptors in spinal animals. Brain Res. 1974;68:215–225. doi: 10.1016/0006-8993(74)90391-6. PubMed DOI

Nakagawa Y, Nishikimi T, Kuwahara K. Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides. 2019;111:18–25. doi: 10.1016/j.peptides.2018.05.012. PubMed DOI

Sayer G, Bhat G. The renin-angiotensin-aldosterone system and heart failure. Cardiol Clin. 2014;32(1):21–32. doi: 10.1016/j.ccl.2013.09.002. PubMed DOI

Laghlam D, Jozwiak M, Nguyen LS. Renin-Angiotensin-Aldosterone System and Immunomodulation: A State-of-the-Art Review. Cells. 2021:10. doi: 10.3390/cells10071767. PubMed DOI PMC

Nehme A, Zouein FA, Zayeri ZD, Zibara K. An Update on the Tissue Renin Angiotensin System and Its Role in Physiology and Pathology. J Cardiovasc Dev Dis. 2019;6:14. doi: 10.3390/jcdd6020014. PubMed DOI PMC

Bernstein KE, Khan Z, Giani JF, Cao DY, Bernstein EA, Shen XZ. Angiotensin-converting enzyme in innate and adaptive immunity. Nat Rev Nephrol. 2018;14(5):325–336. doi: 10.1038/nrneph.2018.15. PubMed DOI PMC

Fountain JH, Kaur J, Lappin SL. StatPearls. Treasure Island (FL): StatPearls Publishing; 2023. Mar 12, 2023. Physiology, Renin Angiotensin System. PubMed

Fourkiotis VG, Hanslik G, Hanusch F, Lepenies J, Quinkler M. Aldosterone and the kidney. Horm Metab Res. 2012;44:194–201. doi: 10.1055/s-0031-1295461. PubMed DOI

Hené RJ, Boer P, Koomans HA, Mees EJ. Plasma aldosterone concentrations in chronic renal disease. Kidney Int. 1982;21:98–101. doi: 10.1038/ki.1982.14. PubMed DOI

Bichet DG. Physiopathology of hereditary polyuric states: a molecular view of renal function. Swiss Med Wkly. 2012;142:w13613. doi: 10.4414/smw.2012.13613. PubMed DOI

de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 1981;28:89–94. doi: 10.1016/0024-3205(81)90370-2. PubMed DOI

Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci USA. 2000;97(15):8525–8529. doi: 10.1073/pnas.150149097. PubMed DOI PMC

Nishikimi T, Nakagawa Y, Minamino N, Ikeda M, Tabei K, Fujishima A, Takayama K, Akimoto K, Yamada C, Nakao K, Minami T, Kuwabara Y, Kinoshita H, Tsutamoto T, Ishimitsu T, Kangawa K, Kuwahara K, Nakao K. Pro-B-type natriuretic peptide is cleaved intracellularly: impact of distance between O-glycosylation and cleavage sites. Am J Physiol Regul Integr Comp Physiol. 2015;309(6):R639–49. doi: 10.1152/ajpregu.00074.2015. PubMed DOI

Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovasc Res. 2006;69(2):318–328. doi: 10.1016/j.cardiores.2005.10.001. PubMed DOI

Issa N, Ortiz F, Reule SA, Kukla A, Kasiske BL, Mauer M, Jackson S, Matas AJ, Ibrahim HN, Najafian B. The renin-aldosterone axis in kidney transplant recipients and its association with allograft function and structure. Kidney Int. 2014;85(2):404–15. doi: 10.1038/ki.2013.278. PubMed DOI PMC

Talha S, Charloux A, Piquard F, Geny B. Brain natriuretic peptide and right heart dysfunction after heart transplantation. Clin Transplant. 2017;31(6) doi: 10.1111/ctr.12969. PubMed DOI

Zhu Y, Wang D. Segmental Regulation of Sodium and Water Excretion by TRPV1 Activation in the Kidney. J Cardiovasc Pharmacol. 2008;51:437–42. doi: 10.1097/FJC.0b013e318168d120. PubMed DOI PMC

Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519–531. doi: 10.1038/nrn2400. PubMed DOI

Zimmerman CA, Leib DE, Knight ZA. Neural circuits underlying thirst and fluid homeostasis. Nat Rev Neurosci. 2017;18(8):459–469. doi: 10.1038/nrn.2017.71. PubMed DOI PMC

Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54:1747–1762. doi: 10.1016/j.jacc.2009.05.015. PubMed DOI

Yang T, Levy MN. The phase-dependency of the cardiac chronotropic responses to vagal stimulation as a factor in sympathetic-vagal interactions. Circulation Research. 1984;54:703–710. doi: 10.1161/01.RES.54.6.703. PubMed DOI

Kinugawa T, Dibner-Dunlap ME. Altered vagal and sympathetic control of heart rate in left ventricular dysfunction and heart failure. Am J Physiol. 1995;268:R310–16. doi: 10.1152/ajpregu.1995.268.2.R310. PubMed DOI

Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation. 2008;118:863–871. doi: 10.1161/CIRCULATIONAHA.107.760405. PubMed DOI

Zoccali C, Ciccarelli M, Mallamaci F, Maggiore Q. Parasympathetic function in haemodialysis patients. Nephron. 1986;44:351–354. doi: 10.1159/000184018. PubMed DOI

Sabbah H, Imai M, Zaretsky A, Rastogi S, Wang M, Jiang A, Zacà V. Therapy with Vagus nerve electrical stimulation combined with beta-blockade improves left ventricular systolic function in dogs with heart failure beyond that seen with beta-blockade alone. Europ J Heart Failure Suppl. 2007;509:114–114. doi: 10.1016/S1567-4215(07)60316-6. DOI

Zheng C, Li M, Inagaki M, Kawada T, Sunagawa K, Sugimachi M. Vagal stimulation markedly suppresses arrhythmias in conscious rats with chronic heart failure after myocardial infarction. Conf Proc IEEE Eng Med Biol Soc. 2005;2005:7072–5. PubMed

De Ferrari GM. Vagal stimulation in heart failure. J Cardiovasc Transl Res. 2014;7:310–320. doi: 10.1007/s12265-014-9540-1. PubMed DOI

Green L, Haddad H, Harkness K, Hernandez AF, Kouz S, LeBlanc MH, Masoudi FA, Ross HJ, Roussin A, Sussex B. 2017 Comprehensive Update of the Canadian Cardiovascular Society Guidelines for the Management of Heart Failure. Can J Cardiol. 2017;33:1342–1433. doi: 10.1016/j.cjca.2017.08.022. PubMed DOI

Cohn JN, Pfeffer MA, Rouleau J, Sharpe N, Swedberg K, Straub M, Wiltse C, Wright TJ MOXCON Investigators. Adverse mortality effect of central sympathetic inhibition with sustained-release moxonidine in patients with heart failure (MOXCON) Eur J Heart Fail. 2003;5:659–667. doi: 10.1016/S1388-9842(03)00163-6. PubMed DOI

Fudim M, Sobotka PA, Piccini JP, Patel MR. Renal denervation for patients with heart failure: making a full circle. Circ Heart Fail. 2021;14:e008301. doi: 10.1161/CIRCHEARTFAILURE.121.008301. PubMed DOI

Nammas W, Koistinen J, Paana T, Karjalainen PP. Renal sympathetic denervation for treatment of patients with heart failure: summary of the available evidence. Ann Med. 2017;49:384–395. doi: 10.1080/07853890.2017.1282168. PubMed DOI

Kassab K, Soni R, Kassier A, Fischell TA. The Potential Role of Renal Denervation in the Management of Heart Failure. J Clin Med. 2022;11(14):4147. doi: 10.3390/jcm11144147. PubMed DOI PMC

Miller M. Fluid and electrolyte homeostasis in the elderly: physiological changes of ageing and clinical consequences. Baillieres Clin Endocrinol Metab. 1997;11:367–387. doi: 10.1016/S0950-351X(97)80347-3. PubMed DOI

Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia. 2012;53(Suppl 6):1–6. doi: 10.1111/j.1528-1167.2012.03696.x. PubMed DOI PMC

Sterns RH. Disorders of plasma sodium--causes, consequences, and correction. N Engl J Med. 2015;372(1):55–65. doi: 10.1056/NEJMra1404489. PubMed DOI

Edelman IS, Leibman J, O’Mera MP, Birkenfeld LW. Interrelations between serum sodium concentration, serum osmolarity and total exchangeable sodium, total exchangeable potassium and total body water. J Clin Invest. 1958;37(9):1236–1256. doi: 10.1172/JCI103712. PubMed DOI PMC

Titze J, Dahlmann A, Lerchl K, et al. Spooky sodium balance. Kidney Int. 2014;85:759–767. doi: 10.1038/ki.2013.367. PubMed DOI

Lemoine S, Salermo F, Akbari A, McKelvie R, McIntyre C. Tissue Sodium Storage in Patients With Heart Failure: A New Therapeutic Target? Circulation: Cardiovascular Imaging. 2021;14(11):e012910. doi: 10.1161/CIRCIMAGING.121.012910. PubMed DOI

Sterns RH, Silver SM. Cerebral salt wasting versus SIADH: what difference? J Am Soc Nephrol. 2008;19:194–196. doi: 10.1681/ASN.2007101118. PubMed DOI

Pedersen EB, Thomsen IM, Lauridsen TG. Abnormal function of the vasopressin-cyclic-AMP-aquaporin2 axis during urine concentrating and diluting in patients with reduced renal function. A case control study. BMC Nephrol. 2010;11:26. doi: 10.1186/1471-2369-11-26. PubMed DOI PMC

Haldeman GA, Croft JB, Giles WH, Rashidee A. Hospitalization of patients with heart failure: National Hospital Discharge Survey, 1985 to 1995. Am Heart J. 1999;137:352–360. doi: 10.1053/hj.1999.v137.95495. PubMed DOI

González-Pacheco H, Álvarez-Sangabriel A, Martínez-Sánchez C, Briseño-Cruz JL, Altamirano-Castillo A, Mendoza-García S, Manzur-Sandoval D, Amezcua-Guerra LM, Sandoval J, Bojalil R, Araiza-Garaygordobil D, Sierra-Lara D, Guiza-Sánchez CA, Gopar-Nieto R, Cruz-Rodríguez C, Valdivia-Nuño JJ, Salas-Teles B, Arias-Mendoza A. Clinical phenotypes, aetiologies, management, and mortality in acute heart failure: a single-institution study in Latin-America. ESC Heart Fail. 2021;8:423–437. doi: 10.1002/ehf2.13092. PubMed DOI PMC

Ismail Y, Kasmikha Z, Green HL, McCullough PA. Cardio-renal syndrome type 1: epidemiology, pathophysiology, and treatment. Semin Nephrol. 2012;32:18–25. doi: 10.1016/j.semnephrol.2011.11.003. PubMed DOI

Kurmani S, Squire I. Acute Heart Failure: Definition, Classification and Epidemiology. Curr Heart Fail Rep. 2017;14:385–392. doi: 10.1007/s11897-017-0351-y. PubMed DOI PMC

Tabucanon T, Tang WHW. Right heart failure and cardiorenal syndrome. Cardiol Clin. 2020;8:185–202. doi: 10.1016/j.ccl.2020.01.004. PubMed DOI PMC

Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J ADHERE Scientific Advisory Committee and Investigators. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13:422–430. doi: 10.1016/j.cardfail.2007.03.011. PubMed DOI

Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22:1342–1356. doi: 10.1002/ejhf.1858. PubMed DOI PMC

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–3726. doi: 10.1093/eurheartj/ehab368. PubMed DOI

Al-Naher A, Wright D, Devonald MAJ, Pirmohamed M. Renal function monitoring in heart failure - what is the optimal frequency? A narrative review. Br J Clin Pharmacol. 2018;84(1):5–17. doi: 10.1111/bcp.13434. PubMed DOI PMC

Clark AL, Kalra PR, Petrie MC, Mark PB, Tomlinson LA, Tomson CR. Change in renal function associated with drug treatment in heart failure: national guidance. Heart. 2019;105(12):904–910. doi: 10.1136/heartjnl-2018-314158. PubMed DOI PMC

el Nahas AM, Muchaneta-Kubara EC, Essawy M, Soylemezoglu O. Renal fibrosis: insights into pathogenesis and treatment. Int J Biochem Cell Biol. 1997;29(1):55–62. doi: 10.1016/S1357-2725(96)00119-7. PubMed DOI

Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S. Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol. 2016;12(10):610–623. doi: 10.1038/nrneph.2016.113. PubMed DOI

Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J. 2005;26(1):11–17. doi: 10.1093/eurheartj/ehi020. PubMed DOI

Cruz DN, Schmidt-Ott KM, Vescovo G, House AA, Kellum JA, Ronco C, McCullough PA. Pathophysiology of cardiorenal syndrome type 2 in stable chronic heart failure: workgroup statements from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI) Contrib Nephrol. 2013;182:117–136. doi: 10.1159/000349968. PubMed DOI

Patil VP, Salunke BG. Fluid Overload and Acute Kidney Injury. Indian J Crit Care Med. 2020;24(Suppl 3):S94–s97. doi: 10.5005/jp-journals-10071-23401. PubMed DOI PMC

Malík J. In: Echokardiografie u pacientů s chronickým onemocněním ledvin a úvod do kardionefrologie. Maxdorf, editor. Praha: Jessenius; 2018. p. 93.

Singbartl K, Joannidis M. Short-term Effects of Acute Kidney Injury. Crit Care Clin. 2015;31:751–762. doi: 10.1016/j.ccc.2015.06.010. PubMed DOI

Karet FE. Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol. 2009;20(2):251–4. doi: 10.1681/ASN.2008020166. PubMed DOI

Bagshaw SM, Cruz DN, Aspromonte N, Daliento L, Ronco F, Sheinfeld G, Anker SD, Anand I, Bellomo R, Berl T, Bobek I, Davenport A, Haapio M, Hillege H, House A, Katz N, Maisel A, Mankad S, McCullough P, Mebazaa A, Palazzuoli A, Ponikowski P, Shaw A, Soni S, Vescovo G, Zamperetti N, Zanco P, Ronco C Acute Dialysis Quality Initiative Consensus Group. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference. Nephrol Dial Transplant. 2010;25(5):1406–1416. doi: 10.1093/ndt/gfq066. PubMed DOI

Forni LG, McKinnon W, Hilton PJ. Unmeasured anions in metabolic acidosis: unravelling the mystery. Critical Care. 2006;10(4):220. doi: 10.1186/cc4954. PubMed DOI PMC

Harper S, Tomson C, Bates D. Human uremic plasma increases microvascular permeability to water and proteins in vivo. Kidney international. 2002;61:1416–22. doi: 10.1046/j.1523-1755.2002.00252.x. PubMed DOI

De Deyn PP, Vanholder R, D’Hooge R. Nitric oxide in uremia: effects of several potentially toxic guanidino compounds. Kidney Int Suppl. 2003;(84):S25–8. doi: 10.1046/j.1523-1755.63.s84.9.x. PubMed DOI

Scheuer J, Stezoski W. The effects of uremic compounds on cardiac function and metabolism. J Mol Cell Cardiol. 1973;5(3):287–300. doi: 10.1016/0022-2828(73)90068-0. PubMed DOI

Lv JC, Zhang LX. Prevalence and disease burden of chronic kidney disease. Adv Exp Med Biol. 2019;1165:3–15. doi: 10.1007/978-981-13-8871-2_1. PubMed DOI

Ammirati AL. Chronic Kidney Disease. Rev Assoc Med Bras (1992) 2020;66(Suppl 1(Suppl 1)):03–09. doi: 10.1590/1806-9282.66.s1.3. PubMed DOI

Khan YH, Sarriff A, Adnan AS, Khan AH, Mallhi TH. Chronic Kidney Disease, Fluid Overload and Diuretics: A Complicated Triangle. PLoS One. 2016;11(7):e0159335. doi: 10.1371/journal.pone.0159335. PubMed DOI PMC

Matovinović MS. 1 Pathophysiology and Classification of Kidney Diseases. Ejifcc. 2009;20(1):2–11. PubMed PMC

Ronco C, Rinaldo B, Kellum J, Zaccaria R. In: Critical Care Nephrology. Third Edition. Claudio Ronco JAaZR, Bellomo Rinaldo, Kellum, editors. Vol. 3. Netherlands: Elsevier; 2019. DOI

Schmieder RE, Delles C, Mimran A, Fauvel JP, Ruilope LM. Impact of telmisartan versus ramipril on renal endothelial function in patients with hypertension and type 2 diabetes. Diabetes Care. 2007;30(6):1351–1356. doi: 10.2337/dc06-1551. PubMed DOI

Chonchol M, Benderly M, Goldbourt U. Beta-blockers for coronary heart disease in chronic kidney disease. Nephrol Dial Transplant. 2008;23(7):2274–9. doi: 10.1093/ndt/gfm950. PubMed DOI

Scheen AJ, Delanaye P. Inhibiteurs des SGLT2 chez les patients avec insuffisance rénale chronique : des essais contrôlés aux recommandations internationales et perspectives en pratique clinique [SGLT2 inhibitors in patients with chronic kidney disease : from clinical trials to guidelines and new prospects for clinical practice] Rev Med Liege. 2021;76(3):186–194. PubMed

Müller RU, Messchendorp AL, Birn H, Capasso G, Cornec-Le Gall E, Devuyst O, van Eerde A, Guirchoun P, Harris T, Hoorn EJ, Knoers NVAM, Korst U, Mekahli D, Le Meur Y, Nijenhuis T, Ong ACM, Sayer JA, Schaefer F, Servais A, Tesar V, Torra R, Walsh SB, Gansevoort RT. An update on the use of tolvaptan for autosomal dominant polycystic kidney disease: consensus statement on behalf of the ERA Working Group on Inherited Kidney Disorders, the European Rare Kidney Disease Reference Network and Polycystic Kidney Disease International. Nephrol Dial Transplant. 2022;37(5):825–839. doi: 10.1093/ndt/gfab312. PubMed DOI PMC

Clementi A, Virzì GM, Goh CY, et al. Cardiorenal syndrome type 4: a review. Cardiorenal Med. 2013;3(1):63–70. doi: 10.1159/000350397. PubMed DOI PMC

Foley RN, Curtis BM, Randell EW, Parfrey PS. Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin J Am Soc Nephrol. 2010;5(5):805–813. doi: 10.2215/CJN.07761109. PubMed DOI PMC

Hung SC, Kuo KL, Peng CH, Wu CH, Lien YC, Wang YC, Tarng DC. Volume overload correlates with cardiovascular risk factors in patients with chronic kidney disease. Kidney Int. 2014;85:703–709. doi: 10.1038/ki.2013.336. PubMed DOI

Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo R, Berl T, Bobek I, Cruz DN, Daliento L, Davenport A, Haapio M, Hillege H, House AA, Katz N, Maisel A, Mankad S, Zanco P, Mebazaa A, Palazzuoli A, Ronco F, Shaw A, Sheinfeld G, Soni S, Vescovo G, Zamperetti N, Ponikowski P Acute Dialysis Quality Initiative (ADQI) consensus group. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010;31:703–711. doi: 10.1093/eurheartj/ehp507. PubMed DOI PMC

Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32(9):1825–1831. doi: 10.1097/01.CCM.0000138558.16257.3F. PubMed DOI

Levy RJ, Piel DA, Acton PD, Zhou R, Ferrari VA, Karp JS, Deutschman CS. Evidence of myocardial hibernation in the septic heart. Crit Care Med. 2005;33(12):2752–6. doi: 10.1097/01.CCM.0000189943.60945.77. PubMed DOI

Langenberg C, Wan L, Egi M, May CN, Bellomo R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 2006;69(11):1996–2002. doi: 10.1038/sj.ki.5000440. PubMed DOI

Papaioannou VE, Dragoumanis C, Theodorou V, Gargaretas C, Pneumatikos I. Relation of heart rate variability to serum levels of C-reactive protein, interleukin 6, and 10 in patients with sepsis and septic shock. J Crit Care. 2009;24(4):625.e1–625.e6257. doi: 10.1016/j.jcrc.2008.11.010. PubMed DOI

Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice [published correction appears in Eur Heart J 2022 Nov 7;43(42):4468] Eur Heart J. 2021;42(34):3227–3337. doi: 10.1093/eurheartj/ehab484. PubMed DOI

Kondo T, Nakano Y, Adachi S, Murohara T. Effects of Tobacco Smoking on Cardiovascular Disease. Circ J. 2019;83(10):1980–1985. doi: 10.1253/circj.CJ-19-0323. PubMed DOI

Lakier JB. Smoking and cardiovascular disease. Am J Med. 1992;93(1a):8s–12s. doi: 10.1016/0002-9343(92)90620-Q. PubMed DOI

McCullough PA. Cardiorenal syndromes: pathophysiology to prevention. Int J Nephrol. 2010;2011:762590. doi: 10.4061/2011/762590. PubMed DOI PMC

De Vecchis R, Baldi C. Cardiorenal syndrome type 2: from diagnosis to optimal management. Ther Clin Risk Manag. 2014;10:949–961. doi: 10.2147/TCRM.S63255. PubMed DOI PMC

Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjöström CD, Toto RD, Langkilde AM, Wheeler DC DAPA-CKD Trial Committees and Investigators. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020;383(15):1436–1446. doi: 10.1056/NEJMoa2024816. PubMed DOI

The EMPA-KIDNEY Collaborative Group. Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D, Judge P, Mayne KJ, Ng SYA, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu W, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Petrini M, Massey D, Eilbracht J, Brueckmann M, Landray MJ, Baigent C, Haynes R. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2023;388(2):117–127. doi: 10.1056/NEJMoa2204233. PubMed DOI PMC

Marenzi G, Assanelli E, Marana I, Lauri G, Campodonico J, Grazi M, De Metrio M, Galli S, Fabbiocchi F, Montorsi P, Veglia F, Bartorelli AL. N-Acetylcysteine and Contrast-Induced Nephropathy in Primary Angioplasty. New England Journal of Medicine. 2006;354(26):2773–2782. doi: 10.1056/NEJMoa054209. PubMed DOI

Malik J, Valerianova A, Pesickova SS, Michalickova K, Hladinova Z, Hruskova Z, Bednarova V, Rocinova K, Tothova M, Kratochvilova M, Kaiserova L, Buryskova Salajova K, Lejsek V, Sevcik M, Tesar V. Heart failure with preserved ejection fraction is the most frequent but commonly overlooked phenotype in patients on chronic hemodialysis. Front Cardiovasc Med. 2023;10:1130618. doi: 10.3389/fcvm.2023.1130618. PubMed DOI PMC

Cannata-Andía JB, Martín-Carro B, Martín-Vírgala J, Rodríguez-Carrio J, Bande-Fernández JJ, Alonso-Montes C, Carrillo-López N. Chronic Kidney Disease-Mineral and Bone Disorders: Pathogenesis and Management. Calcif Tissue Int. 2021;108(4):410–422. doi: 10.1007/s00223-020-00777-1. PubMed DOI

Hsu CY, Chen LR, Chen KH. Osteoporosis in patients with chronic kidney diseases: a systemic review. Int J Mol Sci. 2020;21(18):6846. doi: 10.3390/ijms21186846. PubMed DOI PMC

Nardi E, Mulè G, Giammanco A, Mattina A, Geraci G, Nardi C, Averna M. Left ventricular hypertrophy in chronic kidney disease: A diagnostic criteria comparison. Nutr Metab Cardiovasc Dis. 2021;31:137–144. doi: 10.1016/j.numecd.2020.08.028. PubMed DOI

McMahon LP, Roger SD, Levin A Slimheart Investigators Group. Development, prevention, and potential reversal of left ventricular hypertrophy in chronic kidney disease. J Am Soc Nephrol. 2004;15:1640–7. doi: 10.1097/01.ASN.0000130566.69170.5E. PubMed DOI

Malik J, Lomonte C, Rotmans J, Chytilova E, Roca-Tey R, Kusztal M, Grus T, Gallieni M. Hemodialysis vascular access affects heart function and outcomes: Tips for choosing the right access for the individual patient. The Journal of Vascular Access. 2021;22(1_suppl):32–41. doi: 10.1177/1129729820969314. PubMed DOI PMC

Zahler D, Merdler I, Banai A, Shusterman E, Feder O, Itach T, Robb L, Banai S, Shacham Y. predictive value of elevated neutrophil gelatinase-associated lipocalin (NGAL) levels for assessment of cardio-renal interactions among st-segment elevation myocardial infarction patients. J Clin Med. 2022;11:2162. doi: 10.3390/jcm11082162. PubMed DOI PMC

Højagergaard MA, Beske RP, Hassager C, Holmvang L, Jensen LO, Shacham Y, Meyer MAS, Moeller JE, Helgestad OKL, Mark PD, Møgelvang R, Frydland M. Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Patients with ST-Elevation Myocardial Infarction and Its Association with Acute Kidney Injury and Mortality. J Clin Med. 2023;12(11):3681. doi: 10.3390/jcm12113681. PubMed DOI PMC

Gembillo G, Visconti L, Giusti MA, Siligato R, Gallo A, Santoro D, Mattina A. Cardiorenal Syndrome: New Pathways and Novel Biomarkers. Biomolecules. 2021;11(11):1581. doi: 10.3390/biom11111581. PubMed DOI PMC

Ishrat R, Ahmed MM, Tazyeen S, Alam A, Farooqui A, Ali R, Imam N, Tamkeen N, Ali S, Zubbair Malik M, Sultan A. In Silico Integrative Approach Revealed Key MicroRNAs and Associated Target Genes in Cardiorenal Syndrome. Bioinform Biol Insights. 2021;15:11779322211027396. doi: 10.1177/11779322211027396. PubMed DOI PMC

Wang Y, Liang Y, Zhao W, Fu G, Li Q, Min X, Guo Y. Circulating miRNA-21 as a diagnostic biomarker in elderly patients with type 2 cardiorenal syndrome. Sci Rep. 2020;10:4894. doi: 10.1038/s41598-020-61836-z. PubMed DOI PMC

Siasos G, Bletsa E, Stampouloglou PK, Oikonomou E, Tsigkou V, Paschou SA, Vlasis K, Marinos G, Vavuranakis M, Stefanadis C, Tousoulis D. MicroRNAs in cardiovascular disease. Hellenic J Cardiol. 2020;61(3):165–173. doi: 10.1016/j.hjc.2020.03.003. PubMed DOI

Liu S. Heart-kidney interactions: mechanistic insights from animal models. Am J Physiol Renal Physiol. 2019;316(5):F974–F985. doi: 10.1152/ajprenal.00624.2017. PubMed DOI

Martínez-Martínez E, Ibarrola J, Fernández-Celis A, Calvier L, Leroy C, Cachofeiro V, Rossignol P, López-Andrés N. Galectin-3 pharmacological inhibition attenuates early renal damage in spontaneously hypertensive rats. J Hypertens. 2018;36(2):368–376. doi: 10.1097/HJH.0000000000001545. PubMed DOI

Szczepankiewicz B, Paslawska U, Paslawski R, Gebarowski T, Zasada W, Michalek M, Noszczyk-Nowak A. The urine podocin/creatinine ratio as a novel biomarker of cardiorenal syndrome in dogs due to degenerative mitral valve disease. J Physiol Pharmacol. 2019;70 doi: 10.26402/jpp.2019.2.06. doi: 10.26402/jpp.2019.2.06. PubMed DOI

Orieux A, Samson C, Pieroni L, Drouin S, Dang Van S, Migeon T, Frere P, Brunet D, Buob D, Hadchouel J, Guihaire J, Mercier O, Galichon P. Pulmonary hypertension without heart failure causes cardiorenal syndrome in a porcine model. Sci Rep. 2023;13(1):9130. doi: 10.1038/s41598-023-36124-1. PubMed DOI PMC

Gabbin B, Meraviglia V, Mummery CL, Rabelink TJ, van Meer BJ, van den Berg CW, Bellin M. Toward Human Models of Cardiorenal Syndrome in vitro. Front Cardiovasc Med. 2022;9:889553. doi: 10.3389/fcvm.2022.889553. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...