Cells in the Non-Uniform Magnetic World: How Cells Respond to High-Gradient Magnetic Fields
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29938810
DOI
10.1002/bies.201800017
Knihovny.cz E-zdroje
- Klíčová slova
- cell differentiation, cell fate, cell signaling, intracellular forces, magnetic fields, magnetic gradient,
- MeSH
- biologická evoluce MeSH
- buněčná diferenciace MeSH
- buněčná smrt fyziologie MeSH
- časové faktory MeSH
- cytoskelet fyziologie MeSH
- kmenové buňky MeSH
- lidé MeSH
- magnetické pole * škodlivé účinky MeSH
- magnetismus metody MeSH
- membránové potenciály MeSH
- nádory patologie MeSH
- regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Imagine cells that live in a high-gradient magnetic field (HGMF). Through what mechanisms do the cells sense a non-uniform magnetic field and how such a field changes the cell fate? We show that magnetic forces generated by HGMFs can be comparable to intracellular forces and therefore may be capable of altering the functionality of an individual cell and tissues in unprecedented ways. We identify the cellular effectors of such fields and propose novel routes in cell biology predicting new biological effects such as magnetic control of cell-to-cell communication and vesicle transport, magnetic control of intracellular ROS levels, magnetically induced differentiation of stem cells, magnetically assisted cell division, or prevention of cells from dividing. On the basis of experimental facts and theoretical modeling we reveal timescales of cellular responses to high-gradient magnetic fields and suggest an explicit dependence of the cell response time on the magnitude of the magnetic field gradient.
Citace poskytuje Crossref.org
Effects of gradient high-field static magnetic fields on diabetic mice
Gradient Magnetic Field Accelerates Division of E. coli Nissle 1917
Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules