An upward 9.4 T static magnetic field inhibits DNA synthesis and increases ROS-P53 to suppress lung cancer growth
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33930848
PubMed Central
PMC8102172
DOI
10.1016/j.tranon.2021.101103
PII: S1936-5233(21)00095-4
Knihovny.cz E-zdroje
- Klíčová slova
- 9.4 T static magnetic field (SMF), Cell cycle, Lung cancer, P53, ROS,
- Publikační typ
- časopisecké články MeSH
Studies have shown that 9.4 Tesla (9.4 T) high-field magnetic resonance imaging (MRI) has obvious advantages in improving image resolution and capacity, but their safety issues need to be further validated before their clinical approval. Meanwhile, emerging experimental evidences show that moderate to high intensity Static Magnetic Fields (SMFs) have some anti-cancer effects. We examined the effects of two opposite SMF directions on lung cancer bearing mice and found when the lung cancer cell-bearing mice were treated with 9.4 T SMFs for 88 h in total, the upward 9.4 T SMF significantly inhibited A549 tumor growth (tumor growth inhibition=41%), but not the downward 9.4 T SMF. In vitro cellular analysis shows that 9.4 T upward SMF treatment for 24 h not only inhibited A549 DNA synthesis, but also significantly increased ROS and P53 levels, and arrested G2 cell cycle. Moreover, the 9.4 T SMF-treatments for 88 h had no severe impairment to the key organs or blood cell count of the mice. Our findings demonstrated the safety of 9.4 T SMF long-term exposure for their future applications in MRI, and revealed the anti-cancer potential of the upward direction 9.4 T SMF.
Zobrazit více v PubMed
Atkinson I.C., Thulborn K.R. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4T. NeuroImage. 2010;51:723–733. PubMed
Timme M., Masthoff M., Nagelmann N., Masthoff M., Faber C., Bürklein S. Imaging of root canal treatment using ultra high field 9.4T UTE-MRI – a preliminary study. Dentomaxillofac. Radiol. 2020;49 PubMed PMC
Vaughan T., DelaBarre L., Snyder C., Tian J., Akgun C., Shrivastava D., Liu W., Olson C., Adriany G., Strupp J., Andersen P., Gopinath A., van de Moortele P.F., Garwood M., Ugurbil K. 9.4 T human MRI: preliminary results. Magn. Reson. Med. 2006;56:1274–1282. PubMed PMC
Bause J., Ehses P., Mirkes C., Shajan G., Scheffler K., Pohmann R. Quantitative and functional pulsed arterial spin labeling in the human brain at 9.4 T. Magn. Reson. Med. 2016;75:1054–1063. PubMed
Zhang L., Ji X., Yang X., Zhang X. Cell type- and density-dependent effect of 1 T static magnetic field on cell proliferation. Oncotarget. 2017;8:13126–13141. PubMed PMC
Tian X., Wang D., Zha M., Yang X., Ji X., Zhang L., Zhang X. Magnetic field direction differentially impacts the growth of different cell types. Electromagn. Biol. Med. 2018;37:114–125. PubMed
Zhang X., Yarema K., Xu A. Springer; 2017. Biological Effects of Static Magnetic Fields.
Higashi T., Yamagishi A., Takeuchi T., Kawaguchi N., Sagawa S., Onishi S., Date M. Orientation of erythrocytes in a strong static magnetic field. Blood. 1993;82:1328–1334. PubMed
Prina-Mello A., Farrell E., Prendergast P., Campbell V., Coey J. Influence of strong static magnetic fields on primary cortical neurons. Bioelectromagn: J. Bioelectromagn, Soc., Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn, Assoc. 2006;27:35–42. PubMed
Zhang L., Wang J., Wang H., Wang W., Li Z., Liu J., Yang X., Ji X., Luo Y., Hu C., Hou Y., He Q., Fang J., Wang J., Liu Q., Li G., Lu Q., Zhang X. Moderate and strong static magnetic fields directly affect EGFR kinase domain orientation to inhibit cancer cell proliferation. Oncotarget. 2016;7:41527–41539. PubMed PMC
Zhang L., Hou Y., Li Z., Ji X., Wang Z., Wang H., Tian X., Yu F., Yang Z., Pi L., Mitchison T.J., Lu Q., Zhang X. Correction: 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells. Elife. 2017;6:e28212. PubMed PMC
Yang X., Li Z., Polyakova T., Dejneka A., Zablotskii V., Zhang X. Effect of static magnetic field on DNA synthesis: the interplay between DNA chirality and magnetic field left-right asymmetry. FASEB bioAdvances. 2020;2:254–263. PubMed PMC
Jin Y., Guo W., Hu X., Liu M., Xu X., Hu F., Lan Y., Lv C., Fang Y., Liu M. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Sci. Rep. 2019;9:1–14. PubMed PMC
Milovanovich I.D., Ćirković S., De Luka S.R., Djordjevich D.M., Ilić A.Ž., Popović T., Arsić A., Obradović D.D., Oprić D., Ristić-Djurović J.L., Trbovich A.M. Homogeneous static magnetic field of different orientation induces biological changes in subacutely exposed mice. Environ. Sci. Pollut. Res. 2016;23:1584–1597. PubMed
De Luka S.R., Ilić A.Ž., Janković S., Djordjevich D.M., Ćirković S., Milovanovich I.D., Stefanović S., Vesković-Moračanin S., Ristić-Djurović J.L., Trbovich A.M. Subchronic exposure to static magnetic field differently affects zinc and copper content in murine organs. Int. J. Radiat. Biol. 2016;92:140–147. PubMed
Hapuarachchige S., Kato Y., Ngen E.J., Smith B., Delannoy M., Artemov D. Non-temperature induced effects of magnetized iron oxide nanoparticles in alternating magnetic field in cancer cells. PLoS One. 2016;11 PubMed PMC
Wang H., Zhang X. ROS reduction does not decrease the anticancer efficacy of X-ray in two breast cancer cell lines. Oxid. Med. Cell Longev. 2019;2019 PubMed PMC
Tian X., Wang D., Feng S., Zhang L., Ji X., Wang Z., Lu Q., Xi C., Pi L., Zhang X. Effects of 3.5–23.0 T static magnetic fields on mice: a safety study. NeuroImage. 2019;199:273–280. PubMed
Pommier Y., Sun Y., Shar-yin N.H., Nitiss J.L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 2016;17:703. PubMed PMC
Terada L.S. Specificity in reactive oxidant signaling: think globally, act locally. J. Cell Biol. 2006;174:615–623. PubMed PMC
Takahashi A., Ohtani N., Yamakoshi K., Iida S.-i., Tahara H., Nakayama K., Nakayama K.I., Ide T., Saya H., Hara E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006;8:1291–1297. PubMed
Booher R.N., Holman P.S., Fattaey A. Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem. 1997;272:22300–22306. PubMed
Taylor W.R., Stark G.R. Regulation of the G2/M transition by p53. Oncogene. 2001;20:1803–1815. PubMed
Wylie K.M., Schrimpf J.E., Morrison L.A. Increased eIF2α phosphorylation attenuates replication of herpes simplex virus 2 vhs mutants in mouse embryonic fibroblasts and correlates with reduced accumulation of the PKR antagonist ICP34.5. J. Virol. 2009;83:9151. PubMed PMC
Marcel V., Ghayad S.E., Belin S., Therizols G., Morel A.-.P., Solano-Gonzàlez E., Vendrell J.A., Hacot S., Mertani H.C., Albaret M.A., Bourdon J.-.C., Jordan L., Thompson A., Tafer Y., Cong R., Bouvet P., Saurin J.-.C., Catez F., Prats A.-.C., Puisieux A., Diaz J.-.J. p53 Acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 2013;24:318–330. PubMed PMC
Park C., Kang C., Kim Y., Cho Z. Advances in MR angiography with 7T MRI: from microvascular imaging to functional angiography. NeuroImage. 2018;168:269–278. PubMed
Uğurbil K. The road to functional imaging and ultrahigh fields. NeuroImage. 2012;62:726–735. PubMed PMC
Kraff O., Quick H.H. 7T: physics, safety, and potential clinical applications. J. Magn. Reson. Imaging. 2017;46:1573–1589. PubMed
Ladd M.E., Bachert P., Meyerspeer M., Moser E., Nagel A.M., Norris D.G., Schmitter S., Speck O., Straub S., Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. Prog. Nucl. Magn. Reson. Spectrosc. 2018;109:1–50. PubMed
Davis A.R., Rawls W.C. Exposition Press; 1974. Magnetism and its Effects on the Living System; p. 1974.
Aarts M., Sharpe R., Garcia-Murillas I., Gevensleben H., Hurd M.S., Shumway S.D., Toniatti C., Ashworth A., Turner N.C. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of WEE1. Cancer Discov. 2012;2:524–539. PubMed
Wang H., Zhang X. Magnetic fields and reactive oxygen species. Int. J. Mol. Sci. 2017;18:2175. PubMed PMC
Van Huizen A.V., Morton J.M., Kinsey L.J., Von Kannon D.G., Saad M.A., Birkholz T.R., Czajka J.M., Cyrus J., Barnes F.S., Beane W.S. Weak magnetic fields alter stem cell–mediated growth. Sci. Adv. 2019;5:eaau7201. PubMed PMC
Zablotskii V., Polyakova T., Dejneka A. Cells in the non-uniform magnetic world: how cells respond to high-gradient magnetic fields. Bioessays. 2018;40 PubMed
Liu B., Chen Y., St Clair D.K. ROS and p53: a versatile partnership. Free Radic. Biol. Med. 2008;44:1529–1535. PubMed PMC
Liu G., Chen X. Regulation of the p53 transcriptional activity. J. Cell. Biochem. 2006;97:448–458. PubMed
Solek P., Majchrowicz L., Bloniarz D., Krotoszynska E., Koziorowski M. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology. 2017;382:84–92. PubMed
Ren J., Ding L., Xu Q., Shi G., Li X., Li X., Ji J., Zhang D., Wang Y., Wang T., Hou Y. LF-MF inhibits iron metabolism and suppresses lung cancer through activation of P53-miR-34a-E2F1/E2F3 pathway. Sci. Rep. 2017;7:749. PubMed PMC
Tenuzzo B., Vergallo C., Dini L. Effect of 6mT static magnetic field on the bcl-2, bax, p53 and hsp70 expression in freshly isolated and in vitro aged human lymphocytes. Tissue Cell. 2009;41:169–179. PubMed
Paleček E., Vlk D., Staňková V., Brázda V., Vojtěšek B., Hupp T.R., Schaper A., Jovin T.M. Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene. 1997;15:2201–2209. PubMed
Jagelská Eva B., Brázda V., Pečinka P., Paleček E., Fojta M. DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites. Biochem. J. 2008;412:57–63. PubMed
Wiskirchen J., Groenewaeller E., Kehlbach R., Heinzelmann F., Wittau M., Rodemann H., Claussen C., Duda S. Long-term effects of repetitive exposure to a static magnetic field (1.5 T) on proliferation of human fetal lung fibroblasts. Magn. Reson. Med. 1999;41:464–468. PubMed
Ngo F.Q., Blue J.W., Roberts W.K. The effects of a static magnetic field on DNA synthesis and survival of mammalian cells irradiated with fast neutrons. Magn. Reson. Med. 1987;5:307–317. PubMed
Sato K., Yamaguchi H., Miyamoto H., Kinouchi Y. Growth of human cultured cells exposed to a non-homogeneous static magnetic field generated by Sm-Co magnets. Biochim. ET Biophys. Acta-Mol. Cell Res. 1992;1136:231–238. PubMed
Qiu L., Tang X., Zhong M., Wang Z. Effect of static magnetic field on proliferation and cell cycle of osteoblast cell. Shanghai Kou Qiang Yi Xue. 2004;13:469–470. PubMed
Effects of gradient high-field static magnetic fields on diabetic mice
Effects of High Magnetic Fields on the Diffusion of Biologically Active Molecules