Exploring Ion Channel Magnetic Pharmacology: Are Magnetic Cues a Viable Alternative to Ion Channel Drugs?

. 2025 Mar ; 47 (3) : e202400200. [epub] 20241209

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39651810

We explore the potential of using magnetic cues as a novel approach to modulating ion channel expression, which could provide an alternative to traditional pharmacological interventions. Ion channels are crucial targets for pharmacological therapies, and ongoing research in this field continues to introduce new methods for treating various diseases. However, the efficacy of ion channel drugs is often compromised by issues such as target selectivity, leading to side effects, toxicity, and complex drug interactions. These challenges, along with problems like drug resistance and difficulties in crossing biological barriers, highlight the need for innovative strategies. In this context, the proposed use of magnetic cues to modulate ion channel expression may offer a promising solution to address these limitations, potentially improving the safety and effectiveness of treatments, particularly for long-term use. Key developments in this area are reviewed, the relationships between changes in ion channel expression and magnetic fields are summarized, knowledge gaps are identified, and central issues relevant to future research are discussed.

Zobrazit více v PubMed

Funk R. H. W. and Scholkmann F., “The Significance of Bioelectricity on all Levels of Organization of an Organism. Part 1: From the Subcellular Level to Cells,” Progress in Biophysics and Molecular Biology 177 (2023): 185–201, 10.1016/j.pbiomolbio.2022.12.002. PubMed DOI

Goldmann W. H., “Actin: A Molecular Wire, an Electrical Cable?,” Cell Biology International 32, no. 7 (2008): 869–870, 10.1016/j.cellbi.2008.03.015. PubMed DOI

Zhang X.. Biological Effects of Static Magnetic Fields, Zhang X. (Springer Singapore: ) (2023).

Brangwynne C. P., Koenderink G. H., MacKintosh F. C., and Weitz D. A., “Nonequilibrium Microtubule Fluctuations in a Model Cytoskeleton,” Physical Review Letters 100, no. 11 (2008): 118104, 10.1103/PhysRevLett.100.118104. PubMed DOI

Zablotskii V., Lunov O., Kubinova S., Polyakova T., Sykova E., and Dejneka A., “Effects of High‐Gradient Magnetic Fields on Living Cell Machinery,” Journal of Physics D‐Applied Physics, no. 49 (2016): 49, doi: Artn 493003 10.1088/0022-3727/49/49/493003. DOI

Berrout J., Jin M., Mamenko M., Zaika O., Pochynyuk O., and O'Neil R. G., “Function of Transient Receptor Potential Cation Channel Subfamily V Member 4 (TRPV4) as a Mechanical Transducer in Flow‐Sensitive Segments of Renal Collecting Duct System (vol 287, pg 8782, 2012),” Journal of Biological Chemistry 287, no. 51 (2012): 42454–42454, 10.1074/jbc.A111.308411. PubMed DOI PMC

Lampugnani M. G., “Endothelial Cell‐to‐Cell Junctions: Adhesion and Signaling in Physiology and Pathology,” Cold Spring Harbor Perspectives in Medicine 2, no. 10 (2012), 10.1101/cshperspect.a006528. PubMed DOI PMC

Gorobets O., Gorobets S., Sharai I., Polyakova T., and Zablotskii V., “Interaction of Magnetic Fields With Biogenic Magnetic Nanoparticles on Cell Membranes: Physiological Consequences for Organisms in Health and Disease,” Bioelectrochemistry 151 (2023): 108390, 10.1016/j.bioelechem.2023.108390. PubMed DOI

Gorobets O., Gorobets S., Polyakova T., and Zablotskii V., “Modulation of Calcium Signaling and Metabolic Pathways in Endothelial Cells With Magnetic Fields,” Nanoscale Advances 6, no. 4 (2024): 1163–1182, 10.1039/D3NA01065A. PubMed DOI PMC

Torbati M., Mozaffari K., Liu L., and Sharma P., “Coupling of Mechanical Deformation and Electromagnetic Fields in Biological Cells,” Reviews of Modern Physics 94, no. 2 (2022): 025003, 10.1103/RevModPhys.94.025003. DOI

Levin M., “Molecular Bioelectricity: How Endogenous Voltage Potentials Control Cell Behavior and Instruct Pattern Regulation In Vivo,” Molecular Biology of the Cell 25, no. 24 (2014): 3835–3850, 10.1091/mbc.E13-12-0708. PubMed DOI PMC

Sempou E., Kostiuk V., Zhu J., et al., “Membrane Potential Drives the Exit From Pluripotency and Cell Fate Commitment via Calcium and mTOR,” Nature Communications 13, no. 1 (2022): 6681, 10.1038/s41467-022-34363-w. PubMed DOI PMC

Zablotskii V., Polyakova T., and Dejneka A. (2023). Controlling Cell Membrane Potential With Static Nonuniform Magnetic Fields. In Zhang X. (Ed.), “Biological Effects of Static Magnetic Fields” (2023): 113–131. Singapore: Springer Nature Singapore.

Binggeli R. and Weinstein R. C., “Membrane Potentials and Sodium Channels: Hypotheses for Growth Regulation and Cancer Formation Based on Changes in Sodium Channels and Gap Junctions,” Journal of Theoretical Biology 123, no. 4 (1986): 377–401, 10.1016/S0022-5193(86)80209-0. PubMed DOI

Levin M. and Stevenson C. G., “Regulation of Cell Behavior and Tissue Patterning by Bioelectrical Signals: Challenges and Opportunities for Biomedical Engineering,” Annual Review of Biomedical Engineering 14 (2012): 295–323, 10.1146/annurev-bioeng-071811-150114. PubMed DOI PMC

Zablotskii V., Lunov O., Novotná B., et al., “Down‐Regulation of Adipogenesis of Mesenchymal Stem Cells by Oscillating High‐Gradient Magnetic Fields and Mechanical Vibration,” Applied Physics Letters, no. 10 (2014): 105, Artn 103702 10.1063/1.4895459. DOI

Wosik J., Chen W., Qin K., Ghobrial R. M., Kubiak J. Z., and Kloc M., “Magnetic Field Changes Macrophage Phenotype,” Biophysical Journal 114, no. 8 (2018): 2001–2013, 10.1016/j.bpj.2018.03.002. PubMed DOI PMC

Zablotskii V., Polyakova T., Lunov O., and Dejneka A., “How a High‐Gradient Magnetic Field Could Affect Cell Life,” Scientific Reports (2016): 6. PubMed PMC

Zhang G., Yu T., Chai X., et al., “Gradient Rotating Magnetic Fields Impairing F‐Actin‐Related Gene CCDC150 to Inhibit Triple‐Negative Breast Cancer Metastasis by Inactivating TGF‐β1/SMAD3 Signaling Pathway,” Research, 7 (2024): 0320. 10.34133/research.0320 PubMed DOI PMC

Ji X., Tian X., Feng S., et al., “Intermittent F‐actin Perturbations by Magnetic Fields Inhibit Breast Cancer Metastasis,” Research, 6 (2023): 0080. 10.34133/research.0080 PubMed DOI PMC

Yang M. and Brackenbury W. J., “Membrane Potential and Cancer Progression,” Frontiers in Physiology 4 (2013): 185. PubMed PMC

Kofman K. and Levin M., “Bioelectric Pharmacology of Cancer: A Systematic Review of Ion Channel Drugs Affecting the Cancer Phenotype,” Progress in Biophysics and Molecular Biology 191 (2024): 25–39, 10.1016/j.pbiomolbio.2024.07.005. PubMed DOI

Zablotskii V., Polyakova T., and Dejneka A., “Modulation of the Cell Membrane Potential and Intracellular Protein Transport by High Magnetic Fields,” Bioelectromagnetics 42, no. 1 (2021): 27–36, 10.1002/bem.22309. PubMed DOI

Rubio Ayala M., Syrovets T., Hafner S., Zablotskii V., Dejneka A., and Simmet T., “Spatiotemporal Magnetic Fields Enhance Cytosolic Ca2+ Levels and Induce Actin Polymerization via Activation of Voltage‐Gated Sodium Channels in Skeletal Muscle Cells,” Biomaterials 163 (2018): 174–184, 10.1016/j.biomaterials.2018.02.031. PubMed DOI

Stevens E. B., Stephens G. J., “Ion Channels as Targets in Drug Discovery: Outlook and Perspectives,” In Stephens G. & Stevens E. (Eds.). Ion Channels as Targets in Drug Discovery. (Cham: Springer International Publishing, 2024): 1–34.

Wulff H., Christophersen P., Colussi P., Chandy K. G., and Yarov‐Yarovoy V., “Antibodies and Venom Peptides: New Modalities for Ion Channels,” Nature Reviews Drug Discovery 18, no. 5 (2019): 339–357, 10.1038/s41573-019-0013-8. PubMed DOI PMC

Hutchings C. J., Colussi P., and Clark T. G., “Ion Channels as Therapeutic Antibody Targets,” Mabs 11, no. 2 (2019): 265–296, 10.1080/19420862.2018.1548232. PubMed DOI PMC

Wu H., Li C., Masood M., et al., “Static Magnetic Fields Regulate T‐Type Calcium Ion Channels and Mediate Mesenchymal Stem Cells Proliferation,” Cells, 11, no 15 (2022): 2460. PubMed PMC

Polyakova T., Zablotskii V., and Dejneka A., “Cell Membrane Pore Formation and Change in Ion Channel Activity in High‐Gradient Magnetic Fields,” IEEE Magnetics Letters 8 (2017): 1–5, 10.1109/LMAG.2017.2732361. DOI

Liu S., Liu S., Gong Y., et al., “Effect of Moderate Static Magnetic Field on Membrane Potential of Abdominal Nerve Fiber in Metapenaeus Ensis,” IEEE Magnetics Letters 14 (2023): 1–5, 10.1109/LMAG.2023.3293391. DOI

Brammerloh M., Sibgatulin R., Herrmann K. H., et al., “In Situ Magnetometry of Iron in Human Dopaminergic Neurons Using Superresolution MRI and Ion‐Beam Microscopy,” Physical Review X, 14, no. (2) (2024): 021041. 10.1103/PhysRevX.14.021041 DOI

De Felice D. and Alaimo A., “Mechanosensitive Piezo Channels in Cancer: Focus on Altered Calcium Signaling in Cancer Cells and in Tumor Progression,” Cancers 12, no. 7 (2020): 1780. PubMed PMC

Pethő Z., Najder K., Bulk E., and Schwab A., “Mechanosensitive Ion Channels Push Cancer Progression,” Cell Calcium 80 (2019): 79–90, 10.1016/j.ceca.2019.03.007. PubMed DOI

Smedler E. and Uhlén P.. Frequency Decoding of Calcium Oscillations. Biochimica Et Biophysica Acta (BBA)—General Subjects. 1840, no. 3 (2014): 964–969. 10.1016/j.bbagen.2013.11.015 PubMed DOI

Cervera J., Manzanares J. A., Levin M., and Mafe S., “Oscillatory Phenomena in Electrophysiological Networks: The Coupling between Cell Bioelectricity and Transcription,” Computers in Biology and Medicine 180 (2024): 108964, 10.1016/j.compbiomed.2024.108964. PubMed DOI

Balasubramanian S., Weston D. A., Levin M., and Davidian D. C. C., “Charging Ahead: Examining the Future Therapeutic Potential of Electroceuticals,” Advanced Therapeutics 7, no. 7 (2024): 2300344, 10.1002/adtp.202300344. DOI

Levin M., “Reprogramming Cells and Tissue Patterning via Bioelectrical Pathways: Molecular Mechanisms and Biomedical Opportunities,” WIREs Systems Biology and Medicine 5, no. 6 (2013): 657–676, 10.1002/wsbm.1236. PubMed DOI PMC

Barbado M., Fablet K., Ronjat M., and De Waard M. (2009). Gene Regulation by Voltage‐Dependent Calcium Channels. Biochimica Et Biophysica Acta (BBA)—Molecular Cell Research, 1793(6), 1096–1104. 10.1016/j.bbamcr.2009.02.004 PubMed DOI

Cervera J., Meseguer S., and Mafe S., “The Interplay Between Genetic and Bioelectrical Signaling Permits a Spatial Regionalisation of Membrane Potentials in Model Multicellular Ensembles,” Scientific Reports 6, no. 1 (2016): 35201, 10.1038/srep35201. PubMed DOI PMC

Kominami H., Kobayashi K., and Yamada H., “Molecular‐scale Visualization and Surface Charge Density Measurement of Z‐DNA in Aqueous Solution,” Scientific Reports, (2019): 9. doi: ARTN 6851 10.1038/s41598-019-42394-5 PubMed DOI PMC

Yang X., Li Z., Polyakova T., Dejneka A., Zablotskii V., and Zhang X., “Effect of Static Magnetic Field on DNA Synthesis: The Interplay Between DNA Chirality and Magnetic Field Left‐Right Asymmetry,” FASEB BioAdvances 2, no. 4 (2020): 254–263, 10.1096/fba.2019-00045. PubMed DOI PMC

Yang X., Song C., Zhang L., et al., “An Upward 9.4 T Static Magnetic Field Inhibits DNA Synthesis and Increases ROS‐P53 to Suppress Lung Cancer Growth,” Translational Oncology 14, no. 7 (2021): 101103, 10.1016/j.tranon.2021.101103. PubMed DOI PMC

Choi S.‐H., Shin J., Park C., et al., “In Vivo Magnetogenetics for Cell‐Type‐Specific Targeting and Modulation of Brain Circuits,” Nature Nanotechnology, 19, no. (9) (2024): 1333–1343. 10.1038/s41565-024-01694-2 PubMed DOI

Blümler P., “Magnetic Guiding With Permanent Magnets: Concept, Realization and Applications to Nanoparticles and Cells,” Cells, 10, no. 10 (2021): 2708. PubMed PMC

Tao Q., Zhang L., Han X., Chen H., Ji X., and Zhang X., “Magnetic Susceptibility Difference‐Induced Nucleus Positioning in Gradient Ultrahigh Magnetic Field,” Biophysical Journal, 118, no. (3) (2020): 578–585. 10.1016/j.bpj.2019.12.020 PubMed DOI PMC

Wiesner T. F., Berk B. C., and Nerem R. M., “A Mathematical Model of the Cytosolic‐Free Calcium Response in Endothelial Cells to Fluid Shear Stress,” Proceedings of the National Academy of Sciences, 94, no. (8) (1997): 3726–3731. 10.1073/pnas.94.8.3726 PubMed DOI PMC

Barbic M., “Possible Magneto‐Mechanical and Magneto‐Thermal Mechanisms of Ion Channel Activation in Magnetogenetics,” Elife, 8 (2019): e45807. 10.7554/eLife.45807 PubMed DOI PMC

Smedler E. and Uhlen P., “Frequency Decoding of Calcium Oscillations,” Biochimica Et Biophysica Acta—General Subjects, 1840, no (3) (2014): 964–969. 10.1016/j.bbagen.2013.11.015 PubMed DOI

Colella M., Grisan F., Robert V., Turner J. D., Thomas A. P., and Pozzan T., “Ca Oscillation Frequency Decoding in Cardiac Cell Hypertrophy: Role of Calcineurin/NFAT as Casignal Integrators,” Proceedings of the National Academy of Sciences of the United States of America, 105, no (8) (2008): 2859–2864. 10.1073/pnas.0712316105 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...