The effects of new Alibernet red wine extract on nitric oxide and reactive oxygen species production in spontaneously hypertensive rats
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22720118
PubMed Central
PMC3375118
DOI
10.1155/2012/806285
Knihovny.cz E-zdroje
- MeSH
- antioxidancia chemie farmakologie MeSH
- aorta účinky léků enzymologie MeSH
- hypertenze metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- ledviny účinky léků enzymologie MeSH
- minerály analýza farmakologie MeSH
- oxid dusnatý metabolismus MeSH
- polyfenoly analýza farmakologie MeSH
- potkani inbrední SHR MeSH
- potkani inbrední WKY MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostlinné extrakty chemie farmakologie MeSH
- srdeční komory účinky léků enzymologie MeSH
- superoxiddismutasa 1 MeSH
- superoxiddismutasa metabolismus MeSH
- synthasa oxidu dusnatého, typ III metabolismus MeSH
- víno analýza MeSH
- Vitis chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- minerály MeSH
- oxid dusnatý MeSH
- polyfenoly MeSH
- reaktivní formy kyslíku MeSH
- rostlinné extrakty MeSH
- Sod1 protein, rat MeSH Prohlížeč
- superoxiddismutasa 1 MeSH
- superoxiddismutasa MeSH
- synthasa oxidu dusnatého, typ III MeSH
We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE) and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHRs). Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day) for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.
Zobrazit více v PubMed
Badimon L, Vilahur G, Padro T. Nutraceuticals and atherosclerosis: human trials. Cardiovascular Therapeutics. 2010;28(4):202–215. PubMed
Kris-Etherton PM, Hecker KD, Bonanome A, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine. 2002;113(9, supplement):71S–88S. PubMed
Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. Journal of Nutritional Biochemistry. 2007;18(9):567–579. PubMed
Arts I, Hollman P. Polyphenols and Disease Risk in Epidemiologic Studies. American Journal of Clinical Nutrition . 2005;81(supplement):317S–325S. PubMed
Schini-Kerth VB, Étienne-Selloum N, Chataigneau T, Auger C. Vascular protection by natural product-derived polyphenols: in vitro and in vivo evidence. Planta Medica. 2011;77(11):1161–1167. PubMed
Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition. 2005;45(4):287–306. PubMed
Van den Brandt P. The impact of a Mediterranean diet and healthy lifestyle on premature mortality in men and women. American Journal of Clinical Nutrition. 2011;94:913–920. PubMed
Kondrashov A, Ševčík R, Benáková H, Koštířová M, Štípek S. The key role of grape variety for antioxidant capacity of red wines. e-SPEN, The European e-Journal of Clinical Nutrition and Metabolism. 2009;4(1):e41–e46.
Gollücke AP. Recent applications of grape polyphenols in foods, beverages and supplements. Recent Patents on Food, Nutrition & Agriculture. 2010;2(2):105–109. PubMed
Iriti M, Faoro F. Bioactivity of grape chemicals for human health. Natural Product Communications. 2009;4(5):611–634. PubMed
Leikert JF, Räthel TR, Wohlfart P, Cheynier V, Vollmar AM, Dirsch VM. Red wine polyphenols enhance endothelial nitric oxide synthase expression and subsequent nitric oxide release from endothelial cells. Circulation. 2002;106(13):1614–1617. PubMed
Räthel TR, Samtleben R, Vollmar AM, Dirsch VM. Activation of endothelial nitric oxide synthase by red wine polyphenols: impact of grape cultivars, growing area and the vinification process. Journal of Hypertension. 2007;25(3):541–549. PubMed
Auger C, Chaabi M, Anselm E, Lobstein A, Schini-Kerth VB. The red wine extract-induced activation of endothelial nitric oxide synthase is mediated by a great variety of polyphenolic compounds. Molecular Nutrition and Food Research. 2010;54(2, supplement):S171–S183. PubMed
Schini-Kerth VB, Étienne-Selloum N, Chataigneau T, Auger C. Vascular protection by natural product-derived polyphenols: in vitro and in vivo evidence. Planta Medica. 2011;77(11):1161–1167. PubMed
Madeira SVF, Auger C, Anselm E, et al. eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries. Journal of Vascular Research. 2009;46(5):406–416. PubMed
Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. Journal of Nutritional Biochemistry. 2005;16(10):577–586. PubMed
Fernández-Pachón MS, Berná G, Otaolaurruchi E, Troncoso AM, Martín F, García-Parrilla MC. Changes in antioxidant endogenous enzymes (activity and gene expression levels) after repeated red wine intake. Journal of Agricultural and Food Chemistry. 2009;57(15):6578–6583. PubMed
Rodrigo R, Miranda A, Vergara L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clinica Chimica Acta. 2011;412(5-6):410–424. PubMed
Nijveldt RJ, Van Nood E, Van Hoorn DEC, Boelens PG, Van Norren K, Van Leeuwen PAM. Flavonoids: a review of probable mechanisms of action and potential applications. American Journal of Clinical Nutrition. 2001;74(4):418–425. PubMed
Frías S, Pérez Trujillo JP, Peńa EM, Conde JE. Classification and differentiation of bottled sweet wines of Canary Islands (Spain) by their metallic content. European Food Research and Technology. 2001;213(2):145–149.
Houtman JPW. Trace elements and cardiovascular diseases. Journal of Cardiovascular Risk. 1996;3(1):18–25. PubMed
Bao B, Prasad AS, Beck FWJ, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. American Journal of Clinical Nutrition. 2010;91(6):1634–1641. PubMed PMC
Frassinetti S, Bronzetti GL, Caltavuturo L, Cini M, Croce CD. The role of zinc in life: a review. Journal of Environmental Pathology, Toxicology and Oncology. 2006;25(3):597–610. PubMed
Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Archives of Toxicology. 2006;80(1):1–9. PubMed
Pechánová O, Bernátová I, Babál P, et al. Red wine polyphenols prevent cardiovascular alterations in L-NAME-induced hypertension. Journal of Hypertension. 2004;22(8):1551–1559. PubMed
Duarte J, Andriambeloson E, Diebolt M, Andriantsitohaina R. Wine polyphenols stimulate superoxide anion production to promote calcium signaling and endothelial-dependent vasodilatation. Physiological Research. 2004;53(6):595–602. PubMed
Bernátová I, Pechánová O, Babál P, Kyselá S, Stvrtina S, Andriantsitohaina R. Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. American Journal of Physiology. 2002;282(3):H942–H948. PubMed
Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 1998;299:152–178.
Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(2):682–685. PubMed PMC
Pecháňová O, Bernátová I, Pelouch V, Šimko F. Protein remodelling of the heart in NO-deficient hypertension: the effect of captopril. Journal of Molecular and Cellular Cardiology. 1997;29(12):3365–3374. PubMed
Pecháňová O, Zicha J, Paulis L, et al. The effect of N-acetylcysteine and melatonin in adult spontaneously hypertensive rats with established hypertension. European Journal of Pharmacology. 2007;561(1–3):129–136. PubMed
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine. 1999;26(9-10):1231–1237. PubMed
Guzik TJ, Channon KM. Hypertension Methods and Protocols. Humana Press; 2005. Measurement of vascular reactive oxygen species production by chemiluminescence; pp. 73–89. PubMed
Lugasi A, Hóvári J. Antioxidant properties of commercial alcoholic and nonalcoholic beverages. Nahrung. 2003;47(2):79–86. PubMed
Burns J, Gardner PT, O’Neil J, et al. Relationship among antioxidant activity, vasodilation capacity, and phenolic content of red wines. Journal of Agricultural and Food Chemistry. 2000;48(2):220–230. PubMed
Beattie JH, Kwun IS. Is zinc deficiency a risk factor for atherosclerosis? British Journal of Nutrition. 2004;91(2):177–181. PubMed
Cuajungco MP, Fagét KY. Zinc takes the center stage: its paradoxical role in Alzheimer’s disease. Brain Research Reviews. 2003;41(1):44–56. PubMed
Kosar F, Sahin I, Taskapan C, et al. Trace element status (Se, Zn, Cu) in heart failure. Anadolu Kardiyoloji Dergisi. 2006;6:216–220. PubMed
Houtman JPW. Trace elements and cardiovascular diseases. Journal of Cardiovascular Risk. 1996;3(1):18–25. PubMed
Bao B, Prasad AS, Beck FWJ, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an atheroprotective agent. American Journal of Clinical Nutrition. 2010;91(6):1634–1641. PubMed PMC
Frassinetti S, Bronzetti GL, Caltavuturo L, Cini M, Croce CD. The role of zinc in life: a review. Journal of Environmental Pathology, Toxicology and Oncology. 2006;25(3):597–610. PubMed
Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Archives of Toxicology. 2006;80(1):1–9. PubMed
Bhalla P, Dhar R, Dhawan DK, Dam Chadha V. Neuroprotective effects of zinc on antioxidant defense system in lithium treated rat brain. Indian Journal of Experimental Biology. 2007;45(11):954–958. PubMed
Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxidants and Redox Signaling. 2011;15(6):1583–1606. PubMed PMC
The Jackson Laboratory. Chemical Treatment Slows ALS in SOD1 Mouse. JAXNOTES Issue 516, 2010, http://jaxmice.jax.org/jaxnotes/516/516b.html.
Mocchegiani E, Muzzioli M, Giacconi R. Zinc and immunoresistance to infection in aging: new biological tools. Trends in Pharmacological Sciences. 2000;21(6):205–208. PubMed
Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. Journal of Clinical Investigation. 2002;109(6):817–826. PubMed PMC
Förstermann U. Nitric oxide and oxidative stress in vascular disease. European Journal of Physiology. 2010;459(6):923–939. PubMed
López-Sepúlveda R, Jiménez R, Romero M, et al. Wine polyphenols improve endothelial function in large vessels of female spontaneously hypertensive rats. Hypertension. 2008;51(4):1088–1095. PubMed
Khoo NKH, White CR, Pozzo-Miller L, et al. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vessels. Free Radical Biology and Medicine. 2010;49(3):339–347. PubMed PMC
Chan SL, Tabellion A, Bagrel D, Perrin-Sarrado C, Capdeville-Atkinson C, Atkinson J. Impact of chronic treatment with red wine polyphenols (RWP) on cerebral arterioles in the spontaneous hypertensive rat. Journal of Cardiovascular Pharmacology. 2008;51(3):304–310. PubMed
Botden IPG, Draijer R, Westerhof BE, et al. Red wine polyphenols do not lower peripheral or central blood pressure in high normal blood pressure and hypertension. American Journal of Hypertension. 2012;25(6):718–723. PubMed