RGDS-Modified Superporous Poly(2-Hydroxyethyl Methacrylate)-Based Scaffolds as 3D In Vitro Leukemia Model
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-07015S
Grantová Agentura České Republiky
LQ1601
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33673496
PubMed Central
PMC7956824
DOI
10.3390/ijms22052376
PII: ijms22052376
Knihovny.cz E-zdroje
- Klíčová slova
- 3D scaffold, B cell survival, RGDS, chronic lymphocytic leukemia, poly(2-hydroxyethyl methacrylate),
- MeSH
- buněčné kultury metody MeSH
- chronická lymfatická leukemie * MeSH
- hydrogely chemie MeSH
- lidé MeSH
- mezenchymální kmenové buňky MeSH
- nádorové buněčné linie MeSH
- oligopeptidy MeSH
- poréznost MeSH
- sukcinimidy chemie MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- arginyl-glycyl-aspartyl-serine MeSH Prohlížeč
- hydrogely MeSH
- N-(gamma-maleimidobutyryloxy)succinimide MeSH Prohlížeč
- oligopeptidy MeSH
- sukcinimidy MeSH
Superporous poly(2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) (P(HEMA-AEMA)) hydrogel scaffolds are designed for in vitro 3D culturing of leukemic B cells. Hydrogel porosity, which influences cell functions and growth, is introduced by adding ammonium oxalate needle-like crystals in the polymerization mixture. To improve cell vitality, cell-adhesive Arg-Gly-Asp-Ser (RGDS) peptide is immobilized on the N-(γ-maleimidobutyryloxy)succinimide-activated P(HEMA-AEMA) hydrogels via reaction of SH with maleimide groups. This modification is especially suitable for the survival of primary chronic lymphocytic leukemia cells (B-CLLs) in 3D cell culture. No other tested stimuli (interleukin-4, CD40 ligand, or shaking) can further improve B-CLL survival or metabolic activity. Both unmodified and RGDS-modified P(HEMA-AEMA) scaffolds serve as a long-term (70 days) 3D culture platforms for HS-5 and M2-10B4 bone marrow stromal cell lines and MEC-1 and HG-3 B-CLL cell lines, although the adherent cells retain their physiological morphologies, preferably on RGDS-modified hydrogels. Moreover, the porosity of hydrogels allows direct cell lysis, followed by efficient DNA isolation from the 3D-cultured cells. P(HEMA-AEMA)-RGDS thus serves as a suitable 3D in vitro leukemia model that enables molecular and metabolic assays and allows imaging of cell morphology, interactions, and migration by confocal microscopy. Such applications can prospectively assist in testing of drugs to treat this frequently recurring or refractory cancer.
Zobrazit více v PubMed
Kipps T.J., Stevenson F.K., Wu C.J., Croce C.M., Packham G., Wierda W.G., O’Brien S., Gribben J., Rai K. Chronic Lymphocytic Leukaemia. Nat. Rev. Dis. Primer. 2017;3:16096. doi: 10.1038/nrdp.2016.96. PubMed DOI PMC
Hallek M. Chronic Lymphocytic Leukemia: 2020 Update on Diagnosis, Risk Stratification and Treatment. Am. J. Hematol. 2019;94:1266–1287. doi: 10.1002/ajh.25595. PubMed DOI
Gribben J.G. How I Treat CLL up Front. Blood. 2010;115:187–197. doi: 10.1182/blood-2009-08-207126. PubMed DOI PMC
Bosch F., Dalla-Favera R. Chronic Lymphocytic Leukaemia: From Genetics to Treatment. Nat. Rev. Clin. Oncol. 2019;16:684–701. doi: 10.1038/s41571-019-0239-8. PubMed DOI
Satpathy A., Datta P., Wu Y., Ayan B., Bayram E., Ozbolat I.T. Developments with 3D Bioprinting for Novel Drug Discovery. Expert Opin. Drug Discov. 2018;13:1115–1129. doi: 10.1080/17460441.2018.1542427. PubMed DOI PMC
Chew S.A., Moscato S., George S., Azimi B., Danti S. Liver Cancer: Current and Future Trends Using Biomaterials. Cancers. 2019;11:2026. doi: 10.3390/cancers11122026. PubMed DOI PMC
Li D., Lin T.L., Lipe B., Hopkins R.A., Shinogle H., Aljitawi O.S. A Novel Extracellular Matrix-Based Leukemia Model Supports Leukemia Cells with Stem Cell-like Characteristics. Leuk. Res. 2018;72:105–112. doi: 10.1016/j.leukres.2018.08.012. PubMed DOI
Zhang C., Yang Z., Dong D.-L., Jang T.-S., Knowles J.C., Kim H.-W., Jin G.-Z., Xuan Y. 3D Culture Technologies of Cancer Stem Cells: Promising Ex Vivo Tumor Models. J. Tissue Eng. 2020;11 doi: 10.1177/2041731420933407. PubMed DOI PMC
Burger J.A., Gribben J.G. The Microenvironment in Chronic Lymphocytic Leukemia (CLL) and Other B Cell Malignancies: Insight into Disease Biology and New Targeted Therapies. Semin. Cancer Biol. 2014;24:71–81. doi: 10.1016/j.semcancer.2013.08.011. PubMed DOI
Barbaglio F., Belloni D., Scarfò L., Sbrana F.V., Ponzoni M., Bongiovanni L., Pavesi L., Zambroni D., Stamatopoulos K., Caiolfa V.R., et al. 3D Co-Culture Model of Chronic Lymphocytic Leukemia Bone Marrow Microenvironment Predicts Patient-Specific Response to Mobilizing Agents. Haematologica. 2020 doi: 10.3324/haematol.2020.248112. PubMed DOI PMC
Dos Santos J., Enfield L., Dos Santos S.B., Allenby M.C., Zemenides S., Mantalaris A., Panoskaltsis N. Primary Chronic Lymphocytic Leukemia Cells Can Be Maintained Long-Term in Serum-Free, Cytokine-Free 3D Culture. Blood. 2017;130:2989. doi: 10.1182/blood.V130.Suppl_1.2989.2989. DOI
Verjans E.-T., Doijen J., Luyten W., Landuyt B., Schoofs L. Three-Dimensional Cell Culture Models for Anticancer Drug Screening: Worth the Effort? J. Cell. Physiol. 2018;233:2993–3003. doi: 10.1002/jcp.26052. PubMed DOI
Datta P., Dey M., Ataie Z., Unutmaz D., Ozbolat I.T. 3D Bioprinting for Reconstituting the Cancer Microenvironment. Npj Precis. Oncol. 2020;4:1–13. doi: 10.1038/s41698-020-0121-2. PubMed DOI PMC
El-Sherbiny I.M., Yacoub M.H. Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges. Glob. Cardiol. Sci. Pract. 2013;2013:316–342. doi: 10.5339/gcsp.2013.38. PubMed DOI PMC
Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D.S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011 doi: 10.1155/2011/290602. DOI
Lee J., Cuddihy M.J., Kotov N.A. Three-Dimensional Cell Culture Matrices: State of the Art. Tissue Eng. Part B Rev. 2008;14:61–86. doi: 10.1089/teb.2007.0150. PubMed DOI
Drury J.L., Mooney D.J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials. 2003;24:4337–4351. doi: 10.1016/S0142-9612(03)00340-5. PubMed DOI
Zhu J., Marchant R.E. Design Properties of Hydrogel Tissue-Engineering Scaffolds. Expert Rev. Med. Devices. 2011;8:607–626. doi: 10.1586/erd.11.27. PubMed DOI PMC
Atzet S., Curtin S., Trinh P., Bryant S., Ratner B. Degradable Poly(2-Hydroxyethyl Methacrylate)-co-Polycaprolactone Hydrogels for Tissue Engineering Scaffolds. Biomacromolecules. 2008;9:3370–3377. doi: 10.1021/bm800686h. PubMed DOI PMC
Kůdela J. Encyclopedia of Polymer Science and Technology. Volume 7. Wiley; New York: 1987. Hydrogels; pp. 783–807.
ten Hacken E., Burger J.A. Microenvironment Dependency in Chronic Lymphocytic Leukemia: The Basis for New Targeted Therapies. Pharmacol. Ther. 2014;144:338–348. doi: 10.1016/j.pharmthera.2014.07.003. PubMed DOI
Lagneaux L., Delforge A., Bron D., De Bruyn C., Stryckmans P. Chronic Lymphocytic Leukemic B Cells but Not Normal B Cells Are Rescued from Apoptosis by Contact with Normal Bone Marrow Stromal Cells. Blood. 1998;91:2387–2396. doi: 10.1182/blood.V91.7.2387. PubMed DOI
Crassini K., Shen Y., Mulligan S., Giles Best O. Modeling the Chronic Lymphocytic Leukemia Microenvironment in Vitro. Leuk. Lymphoma. 2017;58:266–279. doi: 10.1080/10428194.2016.1204654. PubMed DOI
Jabs J., Zickgraf F.M., Park J., Wagner S., Jiang X., Jechow K., Kleinheinz K., Toprak U.H., Schneider M.A., Meister M., et al. Screening Drug Effects in Patient-Derived Cancer Cells Links Organoid Responses to Genome Alterations. Mol. Syst. Biol. 2017;13:955. doi: 10.15252/msb.20177697. PubMed DOI PMC
Sommerová L., Michalová E., Hrstka R. New approaches for chemosensitivity testing in malignant diseases. Klin. Onkol. Cas. Ceske Slov. Onkol. Spolecnosti. 2018;31:117–124. doi: 10.14735/amko2018117. PubMed DOI
Lee J., Li M., Milwid J., Dunham J., Vinegoni C., Gorbatov R., Iwamoto Y., Wang F., Shen K., Hatfield K., et al. Implantable Microenvironments to Attract Hematopoietic Stem/Cancer Cells. Proc. Natl. Acad. Sci. USA. 2012;109:19638–19643. doi: 10.1073/pnas.1208384109. PubMed DOI PMC
Turnbull G., Clarke J., Picard F., Riches P., Jia L., Han F., Li B., Shu W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering. Bioact. Mater. 2018;3:278–314. doi: 10.1016/j.bioactmat.2017.10.001. PubMed DOI PMC
Kubinová Š., Horák D., Syková E. Cholesterol-Modified Superporous Poly(2-Hydroxyethyl Methacrylate) Scaffolds for Tissue Engineering. Biomaterials. 2009;30:4601–4609. doi: 10.1016/j.biomaterials.2009.05.007. PubMed DOI
Macková H., Plichta Z., Proks V., Kotelnikov I., Kučka J., Hlídková H., Horák D., Kubinová Š., Jiráková K. RGDS- and SIKVAVS-Modified Superporous Poly(2-Hydroxyethyl Methacrylate) Scaffolds for Tissue Engineering Applications. Macromol. Biosci. 2016;16:1621–1631. doi: 10.1002/mabi.201600159. PubMed DOI
Singh S., Ghode S., Devi M.R., Limaye L., Kale V. Phenotypic and Functional Characterization of a Marrow-Derived Stromal Cell Line, M210B4 and Its Comparison with Primary Marrow Stromal Cells. Biomed. Res. J. 2015;2:120. doi: 10.4103/2349-3666.240617. DOI
Kurtova A.V., Balakrishnan K., Chen R., Ding W., Schnabl S., Quiroga M.P., Sivina M., Wierda W.G., Estrov Z., Keating M.J., et al. Diverse Marrow Stromal Cells Protect CLL Cells from Spontaneous and Drug-Induced Apoptosis: Development of a Reliable and Reproducible System to Assess Stromal Cell Adhesion-Mediated Drug Resistance. Blood. 2009;114:4441–4450. doi: 10.1182/blood-2009-07-233718. PubMed DOI PMC
Stacchini A., Aragno M., Vallario A., Alfarano A., Circosta P., Gottardi D., Faldella A., Rege-Cambrin G., Thunberg U., Nilsson K., et al. MEC1 and MEC2: Two New Cell Lines Derived from B-Chronic Lymphocytic Leukaemia in Prolymphocytoid Transformation. Leuk. Res. 1999;23:127–136. doi: 10.1016/S0145-2126(98)00154-4. PubMed DOI
German Collection of Microorganisms and Cell Cultures GmbH: Details. [(accessed on 22 October 2019)]; Available online: https://www.dsmz.de/collection/catalogue/details/culture/ACC-765.
Ghia P., Circosta P., Scielzo C., Vallario A., Camporeale A., Granziero L., Caligaris-Cappio F. Chronic Lymphocytic Leukemia. Springer; Berlin, Heidelberg: 2005. Differential effects on CLL cell survival exerted by different microenvironmental elements; pp. 135–145. Current Topics in Microbiology and Immunology. PubMed
Bourgine P.E., Klein T., Paczulla A.M., Shimizu T., Kunz L., Kokkaliaris K.D., Coutu D.L., Lengerke C., Skoda R., Schroeder T., et al. In Vitro Biomimetic Engineering of a Human Hematopoietic Niche with Functional Properties. Proc. Natl. Acad. Sci. USA. 2018;115:E5688–E5695. doi: 10.1073/pnas.1805440115. PubMed DOI PMC
Walsby E., Buggins A., Devereux S., Jones C., Pratt G., Brennan P., Fegan C., Pepper C. Development and Characterization of a Physiologically Relevant Model of Lymphocyte Migration in Chronic Lymphocytic Leukemia. Blood. 2014;123:3607–3617. doi: 10.1182/blood-2013-12-544569. PubMed DOI
Nakayama G.R., Caton M.C., Nova M.P., Parandoosh Z. Assessment of the Alamar Blue Assay for Cellular Growth and Viability in Vitro. J. Immunol. Methods. 1997;204:205–208. doi: 10.1016/S0022-1759(97)00043-4. PubMed DOI
Chiaraviglio L., Kirby J.E. Evaluation of Impermeant, DNA-Binding Dye Fluorescence as a Real-Time Readout of Eukaryotic Cell Toxicity in a High Throughput Screening Format. Assay Drug Dev. Technol. 2014;12:219–228. doi: 10.1089/adt.2014.577. PubMed DOI PMC
Rush J.S., Hodgkin P.D. B Cells Activated via CD40 and IL-4 Undergo a Division Burst but Require Continued Stimulation to Maintain Division, Survival and Differentiation. Eur. J. Immunol. 2001;31:1150–1159. doi: 10.1002/1521-4141(200104)31:4<1150::AID-IMMU1150>3.0.CO;2-V. PubMed DOI
Rombout A., Lust S., Offner F., Naessens E., Verhasselt B., Philippé J. Mimicking the Tumour Microenvironment of Chronic Lymphocytic Leukaemia in Vitro Critically Depends on the Type of B-Cell Receptor Stimulation. Br. J. Cancer. 2016;114:704–712. doi: 10.1038/bjc.2016.35. PubMed DOI PMC
Natoni A., O’Dwyer M., Santocanale C. A Cell Culture System That Mimics Chronic Lymphocytic Leukemia Cells Microenvironment for Drug Screening and Characterization. Methods Mol. Biol. Clifton NJ. 2013;986:217–226. doi: 10.1007/978-1-62703-311-4_14. PubMed DOI
Han K., Pierce S.E., Li A., Spees K., Anderson G.R., Seoane J.A., Lo Y.-H., Dubreuil M., Olivas M., Kamber R.A., et al. CRISPR Screens in Cancer Spheroids Identify 3D Growth-Specific Vulnerabilities. Nature. 2020;580:136–141. doi: 10.1038/s41586-020-2099-x. PubMed DOI PMC
Rosén A., Bergh A.-C., Gogok P., Evaldsson C., Myhrinder A.L., Hellqvist E., Rasul A., Björkholm M., Jansson M., Mansouri L., et al. Lymphoblastoid Cell Line with B1 Cell Characteristics Established from a Chronic Lymphocytic Leukemia Clone by in Vitro EBV Infection. Oncoimmunology. 2012;1:18–27. doi: 10.4161/onci.1.1.18400. PubMed DOI PMC
Crompot E., Van Damme M., Pieters K., Vermeersch M., Perez-Morga D., Mineur P., Maerevoet M., Meuleman N., Bron D., Lagneaux L., et al. Extracellular Vesicles of Bone Marrow Stromal Cells Rescue Chronic Lymphocytic Leukemia B Cells from Apoptosis, Enhance Their Migration and Induce Gene Expression Modifications. Haematologica. 2017;102:1594–1604. doi: 10.3324/haematol.2016.163337. PubMed DOI PMC
Roecklein B.A., Torok-Storb B. Functionally Distinct Human Marrow Stromal Cell Lines Immortalized by Transduction with the Human Papilloma Virus E6/E7 Genes. Blood. 1995;85:997–1005. doi: 10.1182/blood.V85.4.997.bloodjournal854997. PubMed DOI
Lemoine F.M., Humphries R.K., Abraham S.D., Krystal G., Eaves C.J. Partial Characterization of a Novel Stromal Cell-Derived Pre-B-Cell Growth Factor Active on Normal and Immortalized Pre-B Cells. Exp. Hematol. 1988;16:718–726. PubMed
Thevenot P., Nair A., Dey J., Yang J., Tang L. Method to Analyze Three-Dimensional Cell Distribution and Infiltration in Degradable Scaffolds. Tissue Eng. Part C Methods. 2008;14:319–331. doi: 10.1089/ten.tec.2008.0221. PubMed DOI PMC
Jonsson B., Liminga G., Csoka K., Fridborg H., Dhar S., Nygren P., Larsson R. Cytotoxic Activity of Calcein Acetoxymethyl Ester (Calcein/AM) on Primary Cultures of Human Haematological and Solid Tumours. Eur. J. Cancer Oxf. Engl. 1990. 1996;32A:883–887. doi: 10.1016/0959-8049(96)00015-9. PubMed DOI
Durand R.E., Olive P.L. Cytotoxicity, Mutagenicity and DNA Damage by Hoechst 33342. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1982;30:111–116. doi: 10.1177/30.2.7061816. PubMed DOI
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Munshi S., Twining R.C., Dahl R. Alamar Blue Reagent Interacts with Cell-Culture Media Giving Different Fluorescence over Time: Potential for False Positives. J. Pharmacol. Toxicol. Methods. 2014;70:195–198. doi: 10.1016/j.vascn.2014.06.005. PubMed DOI
FastDNATM SPIN Kit for Soil, MP Biomedicals—Instruction Manual. [(accessed on 22 January 2021)]; Available online: https://media.mpbio.com/productattachment/LS082019-EN-FastDNA-SPIN-Kit-for-Soil-116560200-Manual.pdf.
Agilent Genomic DNA Screentape—Quick Guide for TapeStation Systems. [(accessed on 3 December 2019)]; Available online: https://www.agilent.com/cs/library/usermanuals/public/gDNA_QuickGuide.pdf.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020.