In Vitro and In Vivo Models of CLL-T Cell Interactions: Implications for Drug Testing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
No. 20-02566S
Czech Science Foundation
MUNI/A/1330/2021
Masaryk University
NU22-03-00117, MH CZ - DRO (FNBr, 65269705)
Ministry of Health of the Czech Republic
LX22NPO5102
National Institute for Cancer Research, programme EXCELES
No 802644
European Research Council - International
802644
European Research Council - International
PubMed
35804862
PubMed Central
PMC9264798
DOI
10.3390/cancers14133087
PII: cancers14133087
Knihovny.cz E-zdroje
- Klíčová slova
- B cells, CD40L, Eμ-TCL1, IL-21, IL-4, T cells, chronic lymphocytic leukemia, co-culture, fludarabine, ibrutinib, interactions, interleukin, microenvironment, models, therapy resistance, venetoclax, xenograft,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
T cells are key components in environments that support chronic lymphocytic leukemia (CLL), activating CLL-cell proliferation and survival. Here, we review in vitro and in vivo model systems that mimic CLL-T-cell interactions, since these are critical for CLL-cell division and resistance to some types of therapy (such as DNA-damaging drugs or BH3-mimetic venetoclax). We discuss approaches for direct CLL-cell co-culture with autologous T cells, models utilizing supportive cell lines engineered to express T-cell factors (such as CD40L) or stimulating CLL cells with combinations of recombinant factors (CD40L, interleukins IL4 or IL21, INFγ) and additional B-cell receptor (BCR) activation with anti-IgM antibody. We also summarize strategies for CLL co-transplantation with autologous T cells into immunodeficient mice (NOD/SCID, NSG, NOG) to generate patient-derived xenografts (PDX) and the role of T cells in transgenic CLL mouse models based on TCL1 overexpression (Eµ-TCL1). We further discuss how these in vitro and in vivo models could be used to test drugs to uncover the effects of targeted therapies (such as inhibitors of BTK, PI3K, SYK, AKT, MEK, CDKs, BCL2, and proteasome) or chemotherapy (fludarabine and bendamustine) on CLL-T-cell interactions and CLL proliferation.
Faculty of Science Masaryk University 61137 Brno Czech Republic
Molecular Medicine CEITEC Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Smit L.A., Hallaert D.Y.H., Spijker R., de Goeij B., Jaspers A., Kater A.P., van Oers M.H.J., van Noesel C.J.M., Eldering E. Differential Noxa/Mcl-1 Balance in Peripheral versus Lymph Node Chronic Lymphocytic Leukemia Cells Correlates with Survival Capacity. Blood. 2007;109:1660–1668. doi: 10.1182/blood-2006-05-021683. PubMed DOI
Herndon T.M., Chen S.-S., Saba N.S., Valdez J., Emson C., Gatmaitan M., Tian X., Hughes T.E., Sun C., Arthur D.C., et al. Direct In Vivo Evidence for Increased Proliferation of CLL Cells in Lymph Nodes Compared to Bone Marrow and Peripheral Blood. Leukemia. 2017;31:1340–1347. doi: 10.1038/leu.2017.11. PubMed DOI PMC
Herishanu Y., Pérez-Galán P., Liu D., Biancotto A., Pittaluga S., Vire B., Gibellini F., Njuguna N., Lee E., Stennett L., et al. The Lymph Node Microenvironment Promotes B-Cell Receptor Signaling, NF-ΚB Activation, and Tumor Proliferation in Chronic Lymphocytic Leukemia. Blood. 2011;117:563–574. doi: 10.1182/blood-2010-05-284984. PubMed DOI PMC
Pavlasova G., Borsky M., Svobodova V., Oppelt J., Cerna K., Novotna J., Seda V., Fojtova M., Fajkus J., Brychtova Y., et al. Rituximab Primarily Targets an Intra-Clonal BCR Signaling Proficient CLL Subpopulation Characterized by High CD20 Levels. Leukemia. 2018;32:2028–2031. doi: 10.1038/s41375-018-0211-0. PubMed DOI
Seda V., Mraz M. B-Cell Receptor Signalling and Its Crosstalk with Other Pathways in Normal and Malignant Cells. Eur. J. Haematol. 2015;94:193–205. doi: 10.1111/ejh.12427. PubMed DOI
Haselager M.V., Kater A.P., Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front. Oncol. 2020;10:2205. doi: 10.3389/fonc.2020.592205. PubMed DOI PMC
Vlachonikola E., Stamatopoulos K., Chatzidimitriou A. T Cells in Chronic Lymphocytic Leukemia: A Two-Edged Sword. Front. Immunol. 2021;11:612244. doi: 10.3389/fimmu.2020.612244. PubMed DOI PMC
Roessner P.M., Seiffert M. T-Cells in Chronic Lymphocytic Leukemia: Guardians or Drivers of Disease? Leukemia. 2020;34:2012–2024. doi: 10.1038/s41375-020-0873-2. PubMed DOI PMC
Wu X., Fajardo-Despaigne J.E., Zhang C., Neppalli V., Banerji V., Johnston J.B., Gibson S.B., Marshall A.J. Altered T Follicular Helper Cell Subsets and Function in Chronic Lymphocytic Leukemia. Front. Oncol. 2021;11:674492. doi: 10.3389/fonc.2021.674492. PubMed DOI PMC
Ponzoni M., Doglioni C., Caligaris-Cappio F. Chronic Lymphocytic Leukemia: The Pathologist’s View of Lymph Node Microenvironment. Semin. Diagn. Pathol. 2011;28:161–166. doi: 10.1053/j.semdp.2011.02.014. PubMed DOI
Ahearne M.J., Willimott S., Piñon L., Kennedy D.B., Miall F., Dyer M.J.S., Wagner S.D. Enhancement of CD154/IL4 Proliferation by the T Follicular Helper (Tfh) Cytokine, IL21 and Increased Numbers of Circulating Cells Resembling Tfh Cells in Chronic Lymphocytic Leukaemia. Br. J. Haematol. 2013;162:360–370. doi: 10.1111/bjh.12401. PubMed DOI
Coscia M., Pantaleoni F., Riganti C., Vitale C., Rigoni M., Peola S., Castella B., Foglietta M., Griggio V., Drandi D., et al. IGHV Unmutated CLL B Cells Are More Prone to Spontaneous Apoptosis and Subject to Environmental Prosurvival Signals than Mutated CLL B Cells. Leukemia. 2011;25:828–837. doi: 10.1038/leu.2011.12. PubMed DOI
Schattner E.J., Mascarenhas J., Reyfman I., Koshy M., Woo C., Friedman S.M., Crow M.K. Chronic Lymphocytic Leukemia B Cells Can Express CD40 Ligand and Demonstrate T-Cell Type Costimulatory Capacity. Blood. 1998;91:2689–2697. doi: 10.1182/blood.V91.8.2689.2689_2689_2697. PubMed DOI
Gonzalez-Rodriguez A.P., Contesti J., Huergo-Zapico L., Lopez-Soto A., Fernández-Guizán A., Acebes-Huerta A., Gonzalez-Huerta A.J., Gonzalez E., Fernandez-Alvarez C., Gonzalez S. Prognostic Significance of CD8 and CD4 T Cells in Chronic Lymphocytic Leukemia. Leuk. Lymphoma. 2010;51:1829–1836. doi: 10.3109/10428194.2010.503820. PubMed DOI
Long M., Beckwith K., Do P., Mundy B.L., Gordon A., Lehman A.M., Maddocks K.J., Cheney C., Jones J.A., Flynn J.M., et al. Ibrutinib Treatment Improves T Cell Number and Function in CLL Patients. J. Clin. Investig. 2017;127:3052–3064. doi: 10.1172/JCI89756. PubMed DOI PMC
Davis J.E., Sharpe C., Mason K., Tam C.S., Koldej R.M., Ritchie D.S. Ibrutinib Protects T Cells in Patients with CLL from Proliferation-Induced Senescence. J. Transl. Med. 2021;19:473. doi: 10.1186/s12967-021-03136-2. PubMed DOI PMC
Görgün G., Holderried T.A.W., Zahrieh D., Neuberg D., Gribben J.G. Chronic Lymphocytic Leukemia Cells Induce Changes in Gene Expression of CD4 and CD8 T Cells. J. Clin. Investig. 2005;115:1797–1805. doi: 10.1172/JCI24176. PubMed DOI PMC
Tötterman T.H., Carlsson M., Simonsson B., Bengtsson M., Nilsson K. T-Cell Activation and Subset Patterns Are Altered in B-CLL and Correlate with the Stage of the Disease. Blood. 1989;74:786–792. doi: 10.1182/blood.V74.2.786.786. PubMed DOI
Vardi A., Vlachonikola E., Karypidou M., Stalika E., Bikos V., Gemenetzi K., Maramis C., Siorenta A., Anagnostopoulos A., Pospisilova S., et al. Restrictions in the T-Cell Repertoire of Chronic Lymphocytic Leukemia: High-Throughput Immunoprofiling Supports Selection by Shared Antigenic Elements. Leukemia. 2017;31:1555–1561. doi: 10.1038/leu.2016.362. PubMed DOI
Riches J.C., Davies J.K., McClanahan F., Fatah R., Iqbal S., Agrawal S., Ramsay A.G., Gribben J.G. T Cells from CLL Patients Exhibit Features of T-Cell Exhaustion but Retain Capacity for Cytokine Production. Blood. 2013;121:1612–1621. doi: 10.1182/blood-2012-09-457531. PubMed DOI PMC
Kitada S., Zapata J.M., Andreeff M., Reed J.C. Bryostatin and CD40-Ligand Enhance Apoptosis Resistance and Induce Expression of Cell Survival Genes in B-Cell Chronic Lymphocytic Leukaemia. Br. J. Haematol. 1999;106:995–1004. doi: 10.1046/j.1365-2141.1999.01642.x. PubMed DOI
Os A., Bürgler S., Ribes A.P., Funderud A., Wang D., Thompson K.M., Tjønnfjord G.E., Bogen B., Munthe L.A. Chronic Lymphocytic Leukemia Cells Are Activated and Proliferate in Response to Specific T Helper Cells. Cell Rep. 2013;4:566–577. doi: 10.1016/j.celrep.2013.07.011. PubMed DOI
Kater A.P., Dicker F., Mangiola M., Welsh K., Houghten R., Ostresh J., Nefzi A., Reed J.C., Pinilla C., Kipps T.J. Inhibitors of XIAP Sensitize CD40-Activated Chronic Lymphocytic Leukemia Cells to CD95-Mediated Apoptosis. Blood. 2005;106:1742–1748. doi: 10.1182/blood-2005-02-0695. PubMed DOI PMC
Dicker F., Kater A.P., Prada C.E., Fukuda T., Castro J.E., Sun G., Wang J.Y., Kipps T.J. CD154 Induces P73 to Overcome the Resistance to Apoptosis of Chronic Lymphocytic Leukemia Cells Lacking Functional P53. Blood. 2006;108:3450–3457. doi: 10.1182/blood-2006-04-017749. PubMed DOI PMC
Van Attekum M.H., Eldering E., Kater A.P. Chronic Lymphocytic Leukemia Cells Are Active Participants in Microenvironmental Cross-Talk. Haematologica. 2017;102:1469–1476. doi: 10.3324/haematol.2016.142679. PubMed DOI PMC
Burger J.A., Quiroga M.P., Hartmann E., Bürkle A., Wierda W.G., Keating M.J., Rosenwald A. High-Level Expression of the T-Cell Chemokines CCL3 and CCL4 by Chronic Lymphocytic Leukemia B Cells in Nurselike Cell Cocultures and after BCR Stimulation. Blood. 2009;113:3050–3058. doi: 10.1182/blood-2008-07-170415. PubMed DOI PMC
Hartmann E.M., Rudelius M., Burger J.A., Rosenwald A. CCL3 Chemokine Expression by Chronic Lymphocytic Leukemia Cells Orchestrates the Composition of the Microenvironment in Lymph Node Infiltrates. Leuk. Lymphoma. 2016;57:563–571. doi: 10.3109/10428194.2015.1068308. PubMed DOI PMC
Man S., Henley P. Chronic Lymphocytic Leukaemia: The Role of T Cells in a B Cell Disease. Br. J. Haematol. 2019;186:220–233. doi: 10.1111/bjh.15918. PubMed DOI
Vaca A.M., Ioannou N., Sivina M., Vlachonikola E., Clise-Dwyer K., Kim E., Li D., Ma Q., Ferrajoli A., Estrov Z., et al. Activation and Expansion of T-Follicular Helper Cells in Chronic Lymphocytic Leukemia Nurselike Cell Co-Cultures. Leukemia. 2022;36:1324–1335. doi: 10.1038/s41375-022-01519-y. PubMed DOI
Burgess M., Cheung C., Chambers L., Ravindranath K., Minhas G., Knop L., Mollee P., McMillan N.A.J., Gill D. CCL2 and CXCL2 Enhance Survival of Primary Chronic Lymphocytic Leukemia Cells in Vitro. Leuk. Lymphoma. 2012;53:1988–1998. doi: 10.3109/10428194.2012.672735. PubMed DOI
Calissano C., Damle R.N., Marsilio S., Yan X.-J., Yancopoulos S., Hayes G., Emson C., Murphy E.J., Hellerstein M.K., Sison C., et al. Intraclonal Complexity in Chronic Lymphocytic Leukemia: Fractions Enriched in Recently Born/Divided and Older/Quiescent Cells. Mol. Med. 2011;17:1374–1382. doi: 10.2119/molmed.2011.00360. PubMed DOI PMC
Seda V., Vojackova E., Ondrisova L., Kostalova L., Sharma S., Loja T., Mladonicka Pavlasova G., Zicha D., Kudlickova Peskova M., Krivanek J., et al. FoxO1-GAB1 Axis Regulates Homing Capacity and Tonic AKT Activity in Chronic Lymphocytic Leukemia. Blood. 2021;138:758–772. doi: 10.1182/blood.2020008101. PubMed DOI PMC
Sharma S., Pavlasova G.M., Seda V., Cerna K.A., Vojackova E., Filip D., Ondrisova L., Sandova V., Kostalova L., Zeni P.F., et al. MiR-29 Modulates CD40 Signaling in Chronic Lymphocytic Leukemia by Targeting TRAF4: An Axis Affected by BCR Inhibitors. Blood. 2021;137:2481–2494. doi: 10.1182/blood.2020005627. PubMed DOI PMC
Purroy N., Abrisqueta P., Carabia J., Carpio C., Palacio C., Bosch F., Crespo M. Co-Culture of Primary CLL Cells with Bone Marrow Mesenchymal Cells, CD40 Ligand and CpG ODN Promotes Proliferation of Chemoresistant CLL Cells Phenotypically Comparable to Those Proliferating In Vivo. Oncotarget. 2014;6:7632–7643. doi: 10.18632/oncotarget.2939. PubMed DOI PMC
Tretter T., Schuler M., Schneller F., Brass U., Esswein M., Aman M.J., Huber C., Peschel C. Direct Cellular Interaction with Activated CD4(+) T Cells Overcomes Hyporesponsiveness of B-Cell Chronic Lymphocytic Leukemia In Vitro. Cell Immunol. 1998;189:41–50. doi: 10.1006/cimm.1998.1360. PubMed DOI
Patten P.E.M., Buggins A.G.S., Richards J., Wotherspoon A., Salisbury J., Mufti G.J., Hamblin T.J., Devereux S. CD38 Expression in Chronic Lymphocytic Leukemia Is Regulated by the Tumor Microenvironment. Blood. 2008;111:5173–5181. doi: 10.1182/blood-2007-08-108605. PubMed DOI
Romano C., De Fanis U., Sellitto A., Dalla Mora L., Chiurazzi F., Giunta R., Rotoli B., Lucivero G. Effects of Preactivated Autologous T Lymphocytes on CD80, CD86 and CD95 Expression by Chronic Lymphocytic Leukemia B Cells. Leuk. Lymphoma. 2003;44:1963–1971. doi: 10.1080/1042819031000111026. PubMed DOI
Pascutti M.F., Jak M., Tromp J.M., Derks I.A.M., Remmerswaal E.B.M., Thijssen R., van Attekum M.H.A., van Bochove G.G., Luijks D.M., Pals S.T., et al. IL-21 and CD40L Signals from Autologous T Cells Can Induce Antigen-Independent Proliferation of CLL Cells. Blood. 2013;122:3010–3019. doi: 10.1182/blood-2012-11-467670. PubMed DOI
Ghia P., Circosta P., Scielzo C., Vallario A., Camporeale A., Granziero L., Caligaris-Cappio F. Chronic Lymphocytic Leukemia. Springer; Berlin/Heidelberg, Germany: 2005. Differential Effects on CLL Cell Survival Exerted by Different Microenvironmental Elements; pp. 135–145. Current Topics in Microbiology and Immunology. PubMed
Jones C.H., Lin T.T., Walsby E.J., Pratt G.E., Fegan C., Baird D.M., Pepper C. In Vitro Co-Culture of CLL-B Cells Reveals Long-Term Survival, Proliferation, and Maintenance of Telomere Length. Blood. 2016;128:350. doi: 10.1182/blood.V128.22.350.350. DOI
Wiesner M., Zentz C., Mayr C., Wimmer R., Hammerschmidt W., Zeidler R., Moosmann A. Conditional Immortalization of Human B Cells by CD40 Ligation. PLoS ONE. 2008;3:e1464. doi: 10.1371/journal.pone.0001464. PubMed DOI PMC
Willimott S., Baou M., Naresh K., Wagner S.D. CD154 Induces a Switch in Pro-Survival Bcl-2 Family Members in Chronic Lymphocytic Leukaemia. Br. J. Haematol. 2007;138:721–732. doi: 10.1111/j.1365-2141.2007.06717.x. PubMed DOI
Brian A.A. Stimulation of B-Cell Proliferation by Membrane-Associated Molecules from Activated T Cells. Proc. Natl. Acad. Sci. USA. 1988;85:564–568. doi: 10.1073/pnas.85.2.564. PubMed DOI PMC
Schleiss C., Ilias W., Tahar O., Güler Y., Miguet L., Mayeur-Rousse C., Mauvieux L., Fornecker L.-M., Toussaint E., Herbrecht R., et al. BCR-Associated Factors Driving Chronic Lymphocytic Leukemia Cells Proliferation Ex Vivo. Sci. Rep. 2019;9:701. doi: 10.1038/s41598-018-36853-8. PubMed DOI PMC
Liebig T.M., Fiedler A., Zoghi S., Shimabukuro-Vornhagen A., von Bergwelt-Baildon M.S. Generation of Human CD40-Activated B Cells. J. Vis. Exp. 2009;32:1373. doi: 10.3791/1373. PubMed DOI PMC
Ghamlouch H., Darwiche W., Hodroge A., Ouled-Haddou H., Dupont S., Singh A.R., Guignant C., Trudel S., Royer B., Gubler B., et al. Factors Involved in CLL Pathogenesis and Cell Survival Are Disrupted by Differentiation of CLL B-Cells into Antibody-Secreting Cells. Oncotarget. 2015;6:18484–18503. doi: 10.18632/oncotarget.3941. PubMed DOI PMC
Grdisa M. Influence of CD40 Ligation on Survival and Apoptosis of B-CLL Cells In Vitro. Leuk. Res. 2003;27:951–956. doi: 10.1016/S0145-2126(03)00028-6. PubMed DOI
Gricks C.S., Zahrieh D., Zauls A.J., Gorgun G., Drandi D., Mauerer K., Neuberg D., Gribben J.G. Differential Regulation of Gene Expression Following CD40 Activation of Leukemic Compared to Healthy B Cells. Blood. 2004;104:4002–4009. doi: 10.1182/blood-2004-02-0494. PubMed DOI
Scielzo C., Apollonio B., Scarfò L., Janus A., Muzio M., ten Hacken E., Ghia P., Caligaris-Cappio F. The Functional in Vitro Response to CD40 Ligation Reflects a Different Clinical Outcome in Patients with Chronic Lymphocytic Leukemia. Leukemia. 2011;25:1760–1767. doi: 10.1038/leu.2011.149. PubMed DOI
Jacob A., Pound J.D., Challa A., Gordon J. Release of Clonal Block in B Cell Chronic Lymphocytic Leukaemia by Engagement of Co-Operative Epitopes on CD40. Leuk. Res. 1998;22:379–382. doi: 10.1016/S0145-2126(98)00005-8. PubMed DOI
Néron S., Nadeau P.J., Darveau A., Leblanc J.-F. Tuning of CD40-CD154 Interactions in Human B-Lymphocyte Activation: A Broad Array of in Vitro Models for a Complex In Vivo Situation. Arch. Immunol. Ther. Exp. 2011;59:25–40. doi: 10.1007/s00005-010-0108-8. PubMed DOI
Granziero L., Ghia P., Circosta P., Gottardi D., Strola G., Geuna M., Montagna L., Piccoli P., Chilosi M., Caligaris-Cappio F. Survivin Is Expressed on CD40 Stimulation and Interfaces Proliferation and Apoptosis in B-Cell Chronic Lymphocytic Leukemia. Blood. 2001;97:2777–2783. doi: 10.1182/blood.V97.9.2777. PubMed DOI
Néron S., Racine C., Roy A., Guérin M. Differential Responses of Human B-Lymphocyte Subpopulations to Graded Levels of CD40-CD154 Interaction. Immunology. 2005;116:454–463. doi: 10.1111/j.1365-2567.2005.02244.x. PubMed DOI PMC
Dancescu M., Rubio-Trujillo M., Biron G., Bron D., Delespesse G., Sarfati M. Interleukin 4 Protects Chronic Lymphocytic Leukemic B Cells from Death by Apoptosis and Upregulates Bcl-2 Expression. J. Exp. Med. 1992;176:1319–1326. doi: 10.1084/jem.176.5.1319. PubMed DOI PMC
Aguilar-Hernandez M.M., Blunt M.D., Dobson R., Yeomans A., Thirdborough S., Larrayoz M., Smith L.D., Linley A., Strefford J.C., Davies A., et al. IL-4 Enhances Expression and Function of Surface IgM in CLL Cells. Blood. 2016;127:3015–3025. doi: 10.1182/blood-2015-11-682906. PubMed DOI
Guo B., Zhang L., Chiorazzi N., Rothstein T.L. IL-4 Rescues Surface IgM Expression in Chronic Lymphocytic Leukemia. Blood. 2016;128:553–562. doi: 10.1182/blood-2015-11-682997. PubMed DOI PMC
Sandova V., Pavlasova G.M., Seda V., Cerna K.A., Sharma S., Palusova V., Brychtova Y., Pospisilova S., Fernandes S.M., Panovska A., et al. IL4-STAT6 Signaling Induces CD20 in Chronic Lymphocytic Leukemia and This Axis Is Repressed by PI3Kδ Inhibitor Idelalisib. Haematologica. 2021;106:2995–2999. doi: 10.3324/haematol.2021.278644. PubMed DOI PMC
Van Kooten C., Rensink I., Aarden L., van Oers R. Differentiation of Purified Malignant B Cells Induced by PMA or by Activated Normal T Cells. Leukemia. 1993;7:1576–1584. PubMed
Hamilton E., Pearce L., Morgan L., Robinson S., Ware V., Brennan P., Thomas N.S.B., Yallop D., Devereux S., Fegan C., et al. Mimicking the Tumour Microenvironment: Three Different Co-Culture Systems Induce a Similar Phenotype but Distinct Proliferative Signals in Primary Chronic Lymphocytic Leukaemia Cells. Br. J. Haematol. 2012;158:589–599. doi: 10.1111/j.1365-2141.2012.09191.x. PubMed DOI
Tromp J., Tonino S., Elias J., Jaspers A., Luijks D.M., Kater A., Lier R.V., Oers M., Eldering E. Dichotomy in NF-ΚB Signaling and Chemoresistance in Immunoglobulin Variable Heavy-Chain-Mutated versus Unmutated CLL Cells upon CD40/TLR9 Triggering. Oncogene. 2010;29:5071–5082. doi: 10.1038/onc.2010.248. PubMed DOI
Plander M., Seegers S., Ugocsai P., Diermeier-Daucher S., Iványi J., Schmitz G., Hofstädter F., Schwarz S., Orsó E., Knüchel R., et al. Different Proliferative and Survival Capacity of CLL-Cells in a Newly Established in Vitro Model for Pseudofollicles. Leukemia. 2009;23:2118–2128. doi: 10.1038/leu.2009.145. PubMed DOI
Primo D., Scarfò L., Xochelli A., Mattsson M., Ranghetti P., Espinosa A.B., Robles A., Gorrochategui J., Martínez-López J., de la Serna J., et al. A Novel Ex Vivo High-Throughput Assay Reveals Antiproliferative Effects of Idelalisib and Ibrutinib in Chronic Lymphocytic Leukemia. Oncotarget. 2018;9:26019–26031. doi: 10.18632/oncotarget.25419. PubMed DOI PMC
Lu P., Wang S., Franzen C.A., Venkataraman G., McClure R., Li L., Wu W., Niu N., Sukhanova M., Pei J., et al. Ibrutinib and Venetoclax Target Distinct Subpopulations of CLL Cells: Implication for Residual Disease Eradication. Blood Cancer J. 2021;11:1–14. doi: 10.1038/s41408-021-00429-z. PubMed DOI PMC
Mongini P.K.A., Gupta R., Boyle E., Nieto J., Lee H., Stein J., Bandovic J., Stankovic T., Barrientos J., Kolitz J.E., et al. TLR-9 and IL-15 Synergy Promotes the In Vitro Clonal Expansion of Chronic Lymphocytic Leukemia B Cells. J. Immunol. 2015;195:901–923. doi: 10.4049/jimmunol.1403189. PubMed DOI PMC
De Totero D., Capaia M., Fabbi M., Croce M., Meazza R., Cutrona G., Zupo S., Loiacono F., Truini M., Ferrarini M., et al. Heterogeneous Expression and Function of IL-21R and Susceptibility to IL-21−mediated Apoptosis in Follicular Lymphoma Cells. Exp. Hematol. 2010;38:373–383. doi: 10.1016/j.exphem.2010.02.008. PubMed DOI
Cecco L.D., Capaia M., Zupo S., Cutrona G., Matis S., Brizzolara A., Orengo A.M., Croce M., Marchesi E., Ferrarini M., et al. Interleukin 21 Controls MRNA and MicroRNA Expression in CD40-Activated Chronic Lymphocytic Leukemia Cells. PLoS ONE. 2015;10:e0134706. doi: 10.1371/journal.pone.0134706. PubMed DOI PMC
Chapman E.A., Oates M., Mohammad I.S., Davies B.R., Stockman P.K., Zhuang J., Pettitt A.R. Delineating the Distinct Role of AKT in Mediating Cell Survival and Proliferation Induced by CD154 and IL-4/IL-21 in Chronic Lymphocytic Leukemia. Oncotarget. 2017;8:102948–102964. doi: 10.18632/oncotarget.22292. PubMed DOI PMC
De Totero D., Meazza R., Zupo S., Cutrona G., Matis S., Colombo M., Balleari E., Pierri I., Fabbi M., Capaia M., et al. Interleukin-21 Receptor (IL-21R) Is Up-Regulated by CD40 Triggering and Mediates Proapoptotic Signals in Chronic Lymphocytic Leukemia B Cells. Blood. 2006;107:3708–3715. doi: 10.1182/blood-2005-09-3535. PubMed DOI
Nojima T., Haniuda K., Moutai T., Matsudaira M., Mizokawa S., Shiratori I., Azuma T., Kitamura D. In-Vitro Derived Germinal Centre B Cells Differentially Generate Memory B or Plasma Cells In Vivo. Nat. Commun. 2011;2:465. doi: 10.1038/ncomms1475. PubMed DOI
Caeser R., Di Re M., Krupka J.A., Gao J., Lara-Chica M., Dias J.M.L., Cooke S.L., Fenner R., Usheva Z., Runge H.F.P., et al. Genetic Modification of Primary Human B Cells to Model High-Grade Lymphoma. Nat. Commun. 2019;10:4543. doi: 10.1038/s41467-019-12494-x. PubMed DOI PMC
Buschle M., Campana D., Carding S.R., Richard C., Hoffbrand A.V., Brenner M.K. Interferon Gamma Inhibits Apoptotic Cell Death in B Cell Chronic Lymphocytic Leukemia. J. Exp. Med. 1993;177:213–218. doi: 10.1084/jem.177.1.213. PubMed DOI PMC
Xia M., Luo T.Y., Shi Y., Wang G., Tsui H., Harari D., Spaner D.E. Effect of Ibrutinib on the IFN Response of Chronic Lymphocytic Leukemia Cells. J. Immunol. 2020;205:2629–2639. doi: 10.4049/jimmunol.2000478. PubMed DOI
Bauvois B., Pramil E., Jondreville L., Quiney C., Nguyen-Khac F., Susin S.A. Activation of Interferon Signaling in Chronic Lymphocytic Leukemia Cells Contributes to Apoptosis Resistance via a JAK-Src/STAT3/Mcl-1 Signaling Pathway. Biomedicines. 2021;9:188. doi: 10.3390/biomedicines9020188. PubMed DOI PMC
Chaouchi N., Wallon C., Goujard C., Tertian G., Rudent A., Caput D., Ferrera P., Minty A., Vazquez A., Delfraissy J.F. Interleukin-13 Inhibits Interleukin-2-Induced Proliferation and Protects Chronic Lymphocytic Leukemia B Cells from In Vitro Apoptosis. Blood. 1996;87:1022–1029. doi: 10.1182/blood.V87.3.1022.bloodjournal8731022. PubMed DOI
Zhu F., McCaw L., Spaner D.E., Gorczynski R.M. Targeting the IL-17/IL-6 Axis Can Alter Growth of Chronic Lymphocytic Leukemia in Vivo/in Vitro. Leuk. Res. 2018;66:28–38. doi: 10.1016/j.leukres.2018.01.006. PubMed DOI
Ghamlouch H., Ouled-Haddou H., Damaj G., Royer B., Gubler B., Marolleau J.-P. A Combination of Cytokines Rescues Highly Purified Leukemic CLL B-Cells from Spontaneous Apoptosis In Vitro. PLoS ONE. 2013;8:e60370. doi: 10.1371/journal.pone.0060370. PubMed DOI PMC
Alhakeem S.S., McKenna M.K., Oben K.Z., Noothi S.K., Rivas J.R., Hildebrandt G.C., Fleischman R.A., Rangnekar V.M., Muthusamy N., Bondada S. Chronic Lymphocytic Leukemia–Derived IL-10 Suppresses Antitumor Immunity. J. Immunol. 2018;200:4180–4189. doi: 10.4049/jimmunol.1800241. PubMed DOI PMC
Slinger E., Thijssen R., Kater A.P., Eldering E. Targeting Antigen-Independent Proliferation in Chronic Lymphocytic Leukemia through Differential Kinase Inhibition. Leukemia. 2017;31:2601–2607. doi: 10.1038/leu.2017.129. PubMed DOI
Fluckiger A.C., Rossi J.F., Bussel A., Bryon P., Banchereau J., Defrance T. Responsiveness of Chronic Lymphocytic Leukemia B Cells Activated via Surface Igs or CD40 to B-Cell Tropic Factors. Blood. 1992;80:3173–3181. doi: 10.1182/blood.V80.12.3173.3173. PubMed DOI
Kater A.P., Evers L.M., Remmerswaal E.B.M., Jaspers A., Oosterwijk M.F., van Lier R.A.W., van Oers M.H.J., Eldering E. CD40 Stimulation of B-Cell Chronic Lymphocytic Leukaemia Cells Enhances the Anti-Apoptotic Profile, but Also Bid Expression and Cells Remain Susceptible to Autologous Cytotoxic T-Lymphocyte Attack. Br. J. Haematol. 2004;127:404–415. doi: 10.1111/j.1365-2141.2004.05225.x. PubMed DOI
Purroy N., Abrisqueta P., Carabia J., Carpio C., Calpe E., Palacio C., Castellví J., Crespo M., Bosch F. Targeting the Proliferative and Chemoresistant Compartment in Chronic Lymphocytic Leukemia by Inhibiting Survivin Protein. Leukemia. 2014;28:1993–2004. doi: 10.1038/leu.2014.96. PubMed DOI
Purroy N., Carabia J., Abrisqueta P., Egia L., Aguiló M., Carpio C., Palacio C., Crespo M., Bosch F. Inhibition of BCR Signaling Using the Syk Inhibitor TAK-659 Prevents Stroma-Mediated Signaling in Chronic Lymphocytic Leukemia Cells. Oncotarget. 2017;8:742–756. doi: 10.18632/oncotarget.13557. PubMed DOI PMC
Ghalamfarsa G., Jadidi-Niaragh F., Hojjat-Farsangi M., Asgarian-Omran H., Yousefi M., Tahmasebi F., Khoshnoodi J., Razavi S.M., Saboor-Yaraghi A.A., Rabbani H., et al. Differential Regulation of B-Cell Proliferation by IL21 in Different Subsets of Chronic Lymphocytic Leukemia. Cytokine. 2013;62:439–445. doi: 10.1016/j.cyto.2013.03.023. PubMed DOI
Ghamlouch H., Ouled-Haddou H., Guyart A., Regnier A., Trudel S., Claisse J.-F., Fuentes V., Royer B., Marolleau J.-P., Gubler B. TLR9 Ligand (CpG Oligodeoxynucleotide) Induces CLL B-Cells to Differentiate into CD20+ Antibody-Secreting Cells. Front. Immunol. 2014;5:292. doi: 10.3389/fimmu.2014.00292. PubMed DOI PMC
Hallaert D.Y.H., Jaspers A., van Noesel C.J., van Oers M.H.J., Kater A.P., Eldering E. C-Abl Kinase Inhibitors Overcome CD40-Mediated Drug Resistance in CLL: Implications for Therapeutic Targeting of Chemoresistant Niches. Blood. 2008;112:5141–5149. doi: 10.1182/blood-2008-03-146704. PubMed DOI
Oppermann S., Ylanko J., Shi Y., Hariharan S., Oakes C.C., Brauer P.M., Zúñiga-Pflücker J.C., Leber B., Spaner D.E., Andrews D.W. High-Content Screening Identifies Kinase Inhibitors That Overcome Venetoclax Resistance in Activated CLL Cells. Blood. 2016;128:934–947. doi: 10.1182/blood-2015-12-687814. PubMed DOI PMC
Hayden R.E., Pratt G., Davies N.J., Khanim F.L., Birtwistle J., Delgado J., Pearce C., Sant T., Drayson M.T., Bunce C.M. Treatment of Primary CLL Cells with Bezafibrate and Medroxyprogesterone Acetate Induces Apoptosis and Represses the Pro-Proliferative Signal of CD40-Ligand, in Part through Increased 15dDelta12,14,PGJ2. Leukemia. 2009;23:292–304. doi: 10.1038/leu.2008.283. PubMed DOI
Hallaert D.Y.H., Spijker R., Jak M., Derks I.a.M., Alves N.L., Wensveen F.M., de Boer J.P., de Jong D., Green S.R., van Oers M.H.J., et al. Crosstalk among Bcl-2 Family Members in B-CLL: Seliciclib Acts via the Mcl-1/Noxa Axis and Gradual Exhaustion of Bcl-2 Protection. Cell Death Differ. 2007;14:1958–1967. doi: 10.1038/sj.cdd.4402211. PubMed DOI
Vogler M., Butterworth M., Majid A., Walewska R.J., Sun X.-M., Dyer M.J.S., Cohen G.M. Concurrent Up-Regulation of BCL-XL and BCL2A1 Induces Approximately 1000-Fold Resistance to ABT-737 in Chronic Lymphocytic Leukemia. Blood. 2009;113:4403–4413. doi: 10.1182/blood-2008-08-173310. PubMed DOI
Thijssen R., Geest C.R., de Rooij M.F., Liu N., Florea B.I., Weller K., Overkleeft H.S., Van Oers M.H.J., Spaargaren M., Kater A.P., et al. Possible Mechanisms Of Resistance To The Novel BH3-Mimetic ABT-199 In In Vitro Lymph Node Models of CLL—The Role of Abl and Btk. Blood. 2013;122:4188. doi: 10.1182/blood.V122.21.4188.4188. DOI
Elias E.E., Sarapura Martinez V.J., Amondarain M., Colado A., Cordini G., Bezares R.F., Fernandez Grecco H., del Rosario Custidiano M., Sánchez Ávalos J.C., Garate G., et al. Venetoclax-Resistant CLL Cells Show a Highly Activated and Proliferative Phenotype. Cancer Immunol. Immunother. 2022;71:979–987. doi: 10.1007/s00262-021-03043-x. PubMed DOI PMC
Jak M., van Bochove G.G.W., van Lier R.a.W., Eldering E., van Oers M.H.J. CD40 Stimulation Sensitizes CLL Cells to Rituximab-Induced Cell Death. Leukemia. 2011;25:968–978. doi: 10.1038/leu.2011.39. PubMed DOI
Jak M., van Bochove G.G.W., Reits E.A., Kallemeijn W.W., Tromp J.M., Umana P., Klein C., van Lier R.A.W., van Oers M.H.J., Eldering E. CD40 Stimulation Sensitizes CLL Cells to Lysosomal Cell Death Induction by Type II Anti-CD20 MAb GA101. Blood. 2011;118:5178–5188. doi: 10.1182/blood-2011-01-331702. PubMed DOI
Blunt M.D., Koehrer S., Dobson R.C., Larrayoz M., Wilmore S., Hayman A., Parnell J., Smith L.D., Davies A., Johnson P.W.M., et al. The Dual Syk/JAK Inhibitor Cerdulatinib Antagonizes B-Cell Receptor and Microenvironmental Signaling in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2017;23:2313–2324. doi: 10.1158/1078-0432.CCR-16-1662. PubMed DOI PMC
Crassini K., Shen Y., Stevenson W.S., Christopherson R., Ward C., Mulligan S.P., Best O.G. MEK1/2 Inhibition by Binimetinib Is Effective as a Single Agent and Potentiates the Actions of Venetoclax and ABT-737 under Conditions That Mimic the Chronic Lymphocytic Leukaemia (CLL) Tumour Microenvironment. Br. J. Haematol. 2018;182:360–372. doi: 10.1111/bjh.15282. PubMed DOI
Shen Y., Crassini K., Fatima N., O’Dwyer M., O’Neill M., Christopherson R.I., Mulligan S.P., Best O.G. IBL-202 Is Synergistic with Venetoclax in CLL under in Vitro Conditions That Mimic the Tumor Microenvironment. Blood Adv. 2020;4:5093–5106. doi: 10.1182/bloodadvances.2019001369. PubMed DOI PMC
Kurtova A.V., Balakrishnan K., Chen R., Ding W., Schnabl S., Quiroga M.P., Sivina M., Wierda W.G., Estrov Z., Keating M.J., et al. Diverse Marrow Stromal Cells Protect CLL Cells from Spontaneous and Drug-Induced Apoptosis: Development of a Reliable and Reproducible System to Assess Stromal Cell Adhesion-Mediated Drug Resistance. Blood. 2009;114:4441–4450. doi: 10.1182/blood-2009-07-233718. PubMed DOI PMC
Trimarco V., Ave E., Facco M., Chiodin G., Frezzato F., Martini V., Gattazzo C., Lessi F., Giorgi C.A., Visentin A., et al. Cross-Talk between Chronic Lymphocytic Leukemia (CLL) Tumor B Cells and Mesenchymal Stromal Cells (MSCs): Implications for Neoplastic Cell Survival. Oncotarget. 2015;6:42130–42149. doi: 10.18632/oncotarget.6239. PubMed DOI PMC
Haselager M., Thijssen R., West C., Young L., Van Kampen R., Willmore E., Mackay S., Kater A., Eldering E. Regulation of Bcl-XL by Non-Canonical NF-ΚB in the Context of CD40-Induced Drug Resistance in CLL. Cell Death Differ. 2021;28:1658–1668. doi: 10.1038/s41418-020-00692-w. PubMed DOI PMC
Tromp J.M., Geest C.R., Breij E.C.W., Elias J.A., van Laar J., Luijks D.M., Kater A.P., Beaumont T., van Oers M.H.J., Eldering E. Tipping the Noxa/Mcl-1 Balance Overcomes ABT-737 Resistance in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2012;18:487–498. doi: 10.1158/1078-0432.CCR-11-1440. PubMed DOI
Elías E.E., Almejún M.B., Colado A., Cordini G., Vergara-Rubio M., Podaza E., Risnik D., Cabrejo M., Fernández-Grecco H., Bezares R.F., et al. Autologous T-Cell Activation Fosters ABT-199 Resistance in Chronic Lymphocytic Leukemia: Rationale for a Combined Therapy with SYK Inhibitors and Anti-CD20 Monoclonal Antibodies. Haematologica. 2018;103:e458–e461. doi: 10.3324/haematol.2018.188680. PubMed DOI PMC
Romano M.F., Lamberti A., Tassone P., Alfinito F., Costantini S., Chiurazzi F., Defrance T., Bonelli P., Tuccillo F., Turco M.C., et al. Triggering of CD40 Antigen Inhibits Fludarabine-Induced Apoptosis in B Chronic Lymphocytic Leukemia Cells. Blood. 1998;92:990–995. doi: 10.1182/blood.V92.3.990. PubMed DOI
Kielbassa K. Ibrutinib Treatment in CLL Interrupts CD40 Signaling Capacity and Sensitizes CLL Cells to Venetoclax. Blood. 2021;138:1545. doi: 10.1182/blood-2021-152222. DOI
Shen Y., Best O.G., Mulligan S.P., Christopherson R.I. Ibrutinib and Idelalisib Block Immunophenotypic Changes Associated with the Adhesion and Activation of CLL Cells in the Tumor Microenvironment. Leuk. Lymphoma. 2018;59:1927–1937. doi: 10.1080/10428194.2017.1403598. PubMed DOI
Delgado R., Kielbassa K., ter Burg J., Klein C., Trumpfheller C., de Heer K., Kater A.P., Eldering E. Co-Stimulatory versus Cell Death Aspects of Agonistic CD40 Monoclonal Antibody Selicrelumab in Chronic Lymphocytic Leukemia. Cancers. 2021;13:3084. doi: 10.3390/cancers13123084. PubMed DOI PMC
Mraz M., Zent C.S., Church A.K., Jelinek D.F., Wu X., Pospisilova S., Ansell S.M., Novak A.J., Kay N.E., Witzig T.E., et al. Bone Marrow Stromal Cells Protect Lymphoma B-Cells from Rituximab-Induced Apoptosis and Targeting Integrin α-4-β-1 (VLA-4) with Natalizumab Can Overcome This Resistance. Br. J. Haematol. 2011;155:53–64. doi: 10.1111/j.1365-2141.2011.08794.x. PubMed DOI PMC
Buchner M., Baer C., Prinz G., Dierks C., Burger M., Zenz T., Stilgenbauer S., Jumaa H., Veelken H., Zirlik K. Spleen Tyrosine Kinase Inhibition Prevents Chemokine- and Integrin-Mediated Stromal Protective Effects in Chronic Lymphocytic Leukemia. Blood. 2010;115:4497–4506. doi: 10.1182/blood-2009-07-233692. PubMed DOI
Steele A.J., Prentice A.G., Cwynarski K., Hoffbrand A.V., Hart S.M., Lowdell M.W., Samuel E.R., Wickremasinghe R.G. The JAK3-Selective Inhibitor PF-956980 Reverses the Resistance to Cytotoxic Agents Induced by Interleukin-4 Treatment of Chronic Lymphocytic Leukemia Cells: Potential for Reversal of Cytoprotection by the Microenvironment. Blood. 2010;116:4569–4577. doi: 10.1182/blood-2009-09-245811. PubMed DOI
Ondrisova L., Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front. Oncol. 2020;10:591577. doi: 10.3389/fonc.2020.591577. PubMed DOI PMC
Gowda A., Roda J., Hussain S.-R.A., Ramanunni A., Joshi T., Schmidt S., Zhang X., Lehman A., Jarjoura D., Carson W.E., et al. IL-21 Mediates Apoptosis through up-Regulation of the BH3 Family Member BIM and Enhances Both Direct and Antibody-Dependent Cellular Cytotoxicity in Primary Chronic Lymphocytic Leukemia Cells In Vitro. Blood. 2008;111:4723–4730. doi: 10.1182/blood-2007-07-099531. PubMed DOI PMC
Ramsay A.G., Clear A.J., Fatah R., Gribben J.G. Multiple Inhibitory Ligands Induce Impaired T-Cell Immunologic Synapse Function in Chronic Lymphocytic Leukemia That Can Be Blocked with Lenalidomide: Establishing a Reversible Immune Evasion Mechanism in Human Cancer. Blood. 2012;120:1412–1421. doi: 10.1182/blood-2012-02-411678. PubMed DOI PMC
Browning R.L., Byrd W.H., Gupta N., Jones J., Mo X., Hertlein E., Yu L., Muthusamy N., Byrd J.C. Lenalidomide Induces Interleukin-21 Production by T Cells and Enhances IL21-Mediated Cytotoxicity in Chronic Lymphocytic Leukemia B Cells. Cancer Immunol. Res. 2016;4:698–707. doi: 10.1158/2326-6066.CIR-15-0291. PubMed DOI PMC
Fanale M., Assouline S., Kuruvilla J., Solal-Céligny P., Heo D.S., Verhoef G., Corradini P., Abramson J.S., Offner F., Engert A., et al. Phase IA/II, Multicentre, Open-Label Study of the CD40 Antagonistic Monoclonal Antibody Lucatumumab in Adult Patients with Advanced Non-Hodgkin or Hodgkin Lymphoma. Br. J. Haematol. 2014;164:258–265. doi: 10.1111/bjh.12630. PubMed DOI PMC
Scielzo C., Ghia P. Modeling the Leukemia Microenviroment In Vitro. Front. Oncol. 2020;10:607608. doi: 10.3389/fonc.2020.607608. PubMed DOI PMC
Abarrategi A., Mian S.A., Passaro D., Rouault-Pierre K., Grey W., Bonnet D. Modeling the Human Bone Marrow Niche in Mice: From Host Bone Marrow Engraftment to Bioengineering Approaches. J. Exp. Med. 2018;215:729–743. doi: 10.1084/jem.20172139. PubMed DOI PMC
Antonelli A., Noort W.A., Jaques J., de Boer B., de Jong-Korlaar R., Brouwers-Vos A.Z., Lubbers-Aalders L., van Velzen J.F., Bloem A.C., Yuan H., et al. Establishing Human Leukemia Xenograft Mouse Models by Implanting Human Bone Marrow–like Scaffold-Based Niches. Blood. 2016;128:2949–2959. doi: 10.1182/blood-2016-05-719021. PubMed DOI
Shah S.B., Singh A. Creating Artificial Lymphoid Tissues to Study Immunity and Hematological Malignancies. Curr. Opin. Hematol. 2017;24:377–383. doi: 10.1097/MOH.0000000000000356. PubMed DOI PMC
Tavakol D.N., Tratwal J., Bonini F., Genta M., Campos V., Burch P., Hoehnel S., Béduer A., Alessandrini M., Naveiras O., et al. Injectable, Scalable 3D Tissue-Engineered Model of Marrow Hematopoiesis. Biomaterials. 2020;232:119665. doi: 10.1016/j.biomaterials.2019.119665. PubMed DOI
Bello A.B., Park H., Lee S.-H. Current Approaches in Biomaterial-Based Hematopoietic Stem Cell Niches. Acta Biomater. 2018;72:1–15. doi: 10.1016/j.actbio.2018.03.028. PubMed DOI
Sbrana F.V., Pinos R., Barbaglio F., Ribezzi D., Scagnoli F., Scarfò L., Redwan I.N., Martinez H., Farè S., Ghia P., et al. 3D Bioprinting Allows the Establishment of Long-Term 3D Culture Model for Chronic Lymphocytic Leukemia Cells. Front. Immunol. 2021;12:639572. doi: 10.3389/fimmu.2021.639572. PubMed DOI PMC
Svozilová H., Plichta Z., Proks V., Studená R., Baloun J., Doubek M., Pospíšilová Š., Horák D. RGDS-Modified Superporous Poly(2-Hydroxyethyl Methacrylate)-Based Scaffolds as 3D In Vitro Leukemia Model. Int. J. Mol. Sci. 2021;22:2376. doi: 10.3390/ijms22052376. PubMed DOI PMC
Roh K.-H., Song H.W., Pradhan P., Bai K., Bohannon C.D., Dale G., Leleux J., Jacob J., Roy K. A Synthetic Stroma-Free Germinal Center Niche for Efficient Generation of Humoral Immunity Ex Vivo. Biomaterials. 2018;164:106–120. doi: 10.1016/j.biomaterials.2018.02.039. PubMed DOI
Purwada A., Singh A. Immuno-Engineered Organoids for Regulating the Kinetics of B-Cell Development and Antibody Production. Nat. Protoc. 2017;12:168–182. doi: 10.1038/nprot.2016.157. PubMed DOI PMC
Walsby E., Buggins A., Devereux S., Jones C., Pratt G., Brennan P., Fegan C., Pepper C. Development and Characterization of a Physiologically Relevant Model of Lymphocyte Migration in Chronic Lymphocytic Leukemia. Blood. 2014;123:3607–3617. doi: 10.1182/blood-2013-12-544569. PubMed DOI
Pasikowska M., Walsby E., Apollonio B., Cuthill K., Phillips E., Coulter E., Longhi M.S., Ma Y., Yallop D., Barber L.D., et al. Phenotype and Immune Function of Lymph Node and Peripheral Blood CLL Cells Are Linked to Transendothelial Migration. Blood. 2016;128:563–573. doi: 10.1182/blood-2016-01-683128. PubMed DOI
Barbaglio F., Belloni D., Scarfò L., Sbrana F.V., Ponzoni M., Bongiovanni L., Pavesi L., Zambroni D., Stamatopoulos K., Caiolfa V.R., et al. Three-Dimensional Co-Culture Model of Chronic Lymphocytic Leukemia Bone Marrow Microenvironment Predicts Patient-Specific Response to Mobilizing Agents. Haematologica. 2021;106:2334–2344. doi: 10.3324/haematol.2020.248112. PubMed DOI PMC
Lamaison C., Latour S., Hélaine N., Le Morvan V., Saint-Vanne J., Mahouche I., Monvoisin C., Dussert C., Andrique L., Deleurme L., et al. A Novel 3D Culture Model Recapitulates Primary FL B-Cell Features and Promotes Their Survival. Blood Adv. 2021;5:5372–5386. doi: 10.1182/bloodadvances.2020003949. PubMed DOI PMC
Simonetti G., Bertilaccio M.T.S., Ghia P., Klein U. Mouse Models in the Study of Chronic Lymphocytic Leukemia Pathogenesis and Therapy. Blood. 2014;124:1010–1019. doi: 10.1182/blood-2014-05-577122. PubMed DOI
Bresin A., D’Abundo L., Narducci M.G., Fiorenza M.T., Croce C.M., Negrini M., Russo G. TCL1 Transgenic Mouse Model as a Tool for the Study of Therapeutic Targets and Microenvironment in Human B-Cell Chronic Lymphocytic Leukemia. Cell Death Dis. 2016;7:e2071. doi: 10.1038/cddis.2015.419. PubMed DOI PMC
Bichi R., Shinton S.A., Martin E.S., Koval A., Calin G.A., Cesari R., Russo G., Hardy R.R., Croce C.M. Human Chronic Lymphocytic Leukemia Modeled in Mouse by Targeted TCL1 Expression. Proc. Natl. Acad. Sci. USA. 2002;99:6955–6960. doi: 10.1073/pnas.102181599. PubMed DOI PMC
Gorgun G., Ramsay A.G., Holderried T.A.W., Zahrieh D., Le Dieu R., Liu F., Quackenbush J., Croce C.M., Gribben J.G. Eµ-TCL1 Mice Represent a Model for Immunotherapeutic Reversal of Chronic Lymphocytic Leukemia-Induced T-Cell Dysfunction. Proc. Natl. Acad. Sci. USA. 2009;106:6250–6255. doi: 10.1073/pnas.0901166106. PubMed DOI PMC
Hofbauer J.P., Heyder C., Denk U., Kocher T., Holler C., Trapin D., Asslaber D., Tinhofer I., Greil R., Egle A. Development of CLL in the TCL1 Transgenic Mouse Model Is Associated with Severe Skewing of the T-Cell Compartment Homologous to Human CLL. Leukemia. 2011;25:1452–1458. doi: 10.1038/leu.2011.111. PubMed DOI
Kocher T., Asslaber D., Zaborsky N., Flenady S., Denk U., Reinthaler P., Ablinger M., Geisberger R., Bauer J.W., Seiffert M., et al. CD4+ T Cells, but Not Non-Classical Monocytes, Are Dispensable for the Development of Chronic Lymphocytic Leukemia in the TCL1-Tg Murine Model. Leukemia. 2016;30:1409–1413. doi: 10.1038/leu.2015.307. PubMed DOI PMC
Grioni M., Brevi A., Cattaneo E., Rovida A., Bordini J., Bertilaccio M.T.S., Ponzoni M., Casorati G., Dellabona P., Ghia P., et al. CD4+ T Cells Sustain Aggressive Chronic Lymphocytic Leukemia in Eμ-TCL1 Mice through a CD40L-Independent Mechanism. Blood Adv. 2021;5:2817–2828. doi: 10.1182/bloodadvances.2020003795. PubMed DOI PMC
Zapata J.M., Krajewska M., Morse H.C., Choi Y., Reed J.C. TNF Receptor-Associated Factor (TRAF) Domain and Bcl-2 Cooperate to Induce Small B Cell Lymphoma/Chronic Lymphocytic Leukemia in Transgenic Mice. Proc. Natl. Acad. Sci. USA. 2004;101:16600–16605. doi: 10.1073/pnas.0407541101. PubMed DOI PMC
Munzert G., Kirchner D., Stobbe H., Bergmann L., Schmid R.M., Döhner H., Heimpel H. Tumor Necrosis Factor Receptor-Associated Factor 1 Gene Overexpression in B-Cell Chronic Lymphocytic Leukemia: Analysis of NF-ΚB/Rel–Regulated Inhibitors of Apoptosis. Blood. 2002;100:3749–3756. doi: 10.1182/blood.V100.10.3749. PubMed DOI
Elgueta R., Benson M.J., de Vries V.C., Wasiuk A., Guo Y., Noelle R.J. Molecular Mechanism and Function of CD40/CD40L Engagement in the Immune System. Immunol. Rev. 2009;229:152–172. doi: 10.1111/j.1600-065X.2009.00782.x. PubMed DOI PMC
Lee S.Y., Reichlin A., Santana A., Sokol K.A., Nussenzweig M.C., Choi Y. TRAF2 Is Essential for JNK but Not NF-KappaB Activation and Regulates Lymphocyte Proliferation and Survival. Immunity. 1997;7:703–713. doi: 10.1016/S1074-7613(00)80390-8. PubMed DOI
Shimoni A., Marcus H., Canaan A., Ergas D., David M., Berrebi A., Reisner Y. A Model for Human B-Chronic Lymphocytic Leukemia in Human/Mouse Radiation Chimera: Evidence for Tumor-Mediated Suppression of Antibody Production in Low-Stage Disease. Blood. 1997;89:2210–2218. doi: 10.1182/blood.V89.6.2210. PubMed DOI
Shimoni A., Marcus H., Dekel B., Shkarchi R., Arditti F., Shvidel L., Shtalrid M., Bucher W., Canaan A., Ergas D., et al. Autologous T Cells Control B-Chronic Lymphocytic Leukemia Tumor Progression in Human→Mouse Radiation Chimera. Cancer Res. 1999;59:5968–5974. PubMed
Dürig J., Ebeling P., Grabellus F., Sorg U.R., Möllmann M., Schütt P., Göthert J., Sellmann L., Seeber S., Flasshove M., et al. A Novel Nonobese Diabetic/Severe Combined Immunodeficient Xenograft Model for Chronic Lymphocytic Leukemia Reflects Important Clinical Characteristics of the Disease. Cancer Res. 2007;67:8653–8661. doi: 10.1158/0008-5472.CAN-07-1198. PubMed DOI
Aydin S., Grabellus F., Eisele L., Möllmann M., Hanoun M., Ebeling P., Moritz T., Carpinteiro A., Nückel H., Sak A., et al. Investigating the Role of CD38 and Functionally Related Molecular Risk Factors in the CLL NOD/SCID Xenograft Model. Eur. J. Haematol. 2011;87:10–19. doi: 10.1111/j.1600-0609.2011.01626.x. PubMed DOI
Bagnara D., Kaufman M.S., Calissano C., Marsilio S., Patten P.E.M., Simone R., Chum P., Yan X.-J., Allen S.L., Kolitz J.E., et al. A Novel Adoptive Transfer Model of Chronic Lymphocytic Leukemia Suggests a Key Role for T Lymphocytes in the Disease. Blood. 2011;117:5463–5472. doi: 10.1182/blood-2010-12-324210. PubMed DOI PMC
Patten P.E.M., Ferrer G., Chen S.-S., Kolitz J.E., Rai K.R., Allen S.L., Barrientos J.C., Ioannou N., Ramsay A.G., Chiorazzi N. A Detailed Analysis of Parameters Supporting the Engraftment and Growth of Chronic Lymphocytic Leukemia Cells in Immune-Deficient Mice. Front. Immunol. 2021;12:627020. doi: 10.3389/fimmu.2021.627020. PubMed DOI PMC
Oldreive C.E., Skowronska A., Davies N.J., Parry H., Agathanggelou A., Krysov S., Packham G., Rudzki Z., Cronin L., Vrzalikova K., et al. T-Cell Number and Subtype Influence the Disease Course of Primary Chronic Lymphocytic Leukaemia Xenografts in Alymphoid Mice. Dis. Models Mech. 2015;8:1401–1412. doi: 10.1242/dmm.021147. PubMed DOI PMC
Decker S., Zwick A., Khaja Saleem S., Kissel S., Rettig A., Aumann K., Dierks C. Optimized Xenograft Protocol for Chronic Lymphocytic Leukemia Results in High Engraftment Efficiency for All CLL Subgroups. Int. J. Mol. Sci. 2019;20:6277. doi: 10.3390/ijms20246277. PubMed DOI PMC
Davies N.J., Kwok M., Gould C., Oldreive C.E., Mao J., Parry H., Smith E., Agathanggelou A., Pratt G., Taylor A.M.R., et al. Dynamic Changes in Clonal Cytogenetic Architecture during Progression of Chronic Lymphocytic Leukemia in Patients and Patient-Derived Murine Xenografts. Oncotarget. 2017;8:44749–44760. doi: 10.18632/oncotarget.17432. PubMed DOI PMC
Herman S.E.M., Sun X., McAuley E.M., Hsieh M.M., Pittaluga S., Raffeld M., Liu D., Keyvanfar K., Chapman C.M., Chen J., et al. Modeling Tumor-Host Interactions of Chronic Lymphocytic Leukemia in Xenografted Mice to Study Tumor Biology and Evaluate Targeted Therapy. Leukemia. 2013;27:2311–2321. doi: 10.1038/leu.2013.131. PubMed DOI PMC
Patten P.E.M., Ferrer G., Chen S.-S., Simone R., Marsilio S., Yan X.-J., Gitto Z., Yuan C., Kolitz J.E., Barrientos J., et al. Chronic Lymphocytic Leukemia Cells Diversify and Differentiate in Vivo via a Nonclassical Th1-Dependent, Bcl-6-Deficient Process. JCI Insight. 2016;1:e86288. doi: 10.1172/jci.insight.86288. PubMed DOI PMC
Nagatani M., Kodera T., Suzuki D., Igura S., Fukunaga Y., Kanemitsu H., Nakamura D., Mochizuki M., Kemi M., Tamura K., et al. Comparison of Biological Features between Severely Immuno-Deficient NOD/Shi-Scid Il2rgnull and NOD/LtSz-Scid Il2rgnull Mice. Exp. Anim. 2019;68:471–482. doi: 10.1538/expanim.19-0024. PubMed DOI PMC
Kikushige Y., Ishikawa F., Miyamoto T., Shima T., Urata S., Yoshimoto G., Mori Y., Iino T., Yamauchi T., Eto T., et al. Self-Renewing Hematopoietic Stem Cell Is the Primary Target in Pathogenesis of Human Chronic Lymphocytic Leukemia. Cancer Cell. 2011;20:246–259. doi: 10.1016/j.ccr.2011.06.029. PubMed DOI
Burack W.R., Spence J.M., Spence J.P., Spence S.A., Rock P.J., Shenoy G.N., Shultz L.D., Bankert R.B., Bernstein S.H. Patient-Derived Xenografts of Low-Grade B-Cell Lymphomas Demonstrate Roles of the Tumor Microenvironment. Blood Adv. 2017;1:1263–1273. doi: 10.1182/bloodadvances.2017005892. PubMed DOI PMC