Restrictions in the T-cell repertoire of chronic lymphocytic leukemia: high-throughput immunoprofiling supports selection by shared antigenic elements

. 2017 Jul ; 31 (7) : 1555-1561. [epub] 20161125

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27904140

Immunoglobulin (IG) gene repertoire restrictions strongly support antigen selection in the pathogenesis of chronic lymphocytic leukemia (CLL). Given the emerging multifarious interactions between CLL and bystander T cells, we sought to determine whether antigen(s) are also selecting T cells in CLL. We performed a large-scale, next-generation sequencing (NGS) study of the T-cell repertoire, focusing on major stereotyped subsets representing CLL subgroups with undisputed antigenic drive, but also included patients carrying non-subset IG rearrangements to seek for T-cell immunogenetic signatures ubiquitous in CLL. Considering the inherent limitations of NGS, we deployed bioinformatics algorithms for qualitative curation of T-cell receptor rearrangements, and included multiple types of controls. Overall, we document the clonal architecture of the T-cell repertoire in CLL. These T-cell clones persist and further expand overtime, and can be shared by different patients, most especially patients belonging to the same stereotyped subset. Notably, these shared clonotypes appear to be disease-specific, as they are found in neither public databases nor healthy controls. Altogether, these findings indicate that antigen drive likely underlies T-cell expansions in CLL and may be acting in a CLL subset-specific context. Whether these are the same antigens interacting with the malignant clone or tumor-derived antigens remains to be elucidated.

Zobrazit více v PubMed

Blood. 2010 May 13;115(19):3907-15 PubMed

Blood. 2008 Feb 1;111(3):1524-33 PubMed

Blood. 2003 Jun 15;101(12):4952-7 PubMed

Blood. 2015 Jan 29;125(5):856-9 PubMed

Blood. 2012 Aug 16;120(7):1412-21 PubMed

Blood. 2015 May 7;125(19):2915-22 PubMed

N Engl J Med. 2013 Jul 4;369(1):32-42 PubMed

J Clin Invest. 2008 Jul;118(7):2427-37 PubMed

Blood. 2009 Nov 12;114(20):4460-8 PubMed

Clin Cancer Res. 2016 Jan 1;22(1):167-74 PubMed

Semin Cancer Biol. 2014 Feb;24:71-81 PubMed

Expert Rev Hematol. 2015 Feb;8(1):71-8 PubMed

Lancet Haematol. 2014 Nov;1(2):e74-84 PubMed

Blood. 2013 May 16;121(20):4137-41 PubMed

Blood. 2015 Jul 9;126(2):203-11 PubMed

N Engl J Med. 2015 Dec 17;373(25):2425-37 PubMed

Blood. 2015 Jul 9;126(2):212-21 PubMed

Blood. 2015 Jun 4;125(23):3580-7 PubMed

Cell Rep. 2013 Aug 15;4(3):566-77 PubMed

Leukemia. 2003 Dec;17(12):2257-317 PubMed

Nature. 2012 Sep 13;489(7415):309-12 PubMed

Blood. 2011 May 19;117(20):5463-72 PubMed

Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18691-6 PubMed

Blood. 2012 May 10;119(19):4467-75 PubMed

Blood. 2014 May 29;123(22):3390-7 PubMed

Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19414-9 PubMed

Leukemia. 2010 Jul;24(7):1317-24 PubMed

Blood. 2007 Jan 1;109(1):259-70 PubMed

Blood. 2013 Apr 4;121(14):2704-14 PubMed

Mol Med. 2013 Aug 28;19:230-6 PubMed

J Clin Invest. 2005 Jul;115(7):1797-805 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

In Vitro and In Vivo Models of CLL-T Cell Interactions: Implications for Drug Testing

. 2022 Jun 23 ; 14 (13) : . [epub] 20220623

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...