Not all IGHV3-21 chronic lymphocytic leukemias are equal: prognostic considerations

. 2015 Jan 29 ; 125 (5) : 856-9. [epub] 20141217

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25634617

Grantová podpora
R01 CA136591 NCI NIH HHS - United States
CA136591 NCI NIH HHS - United States

Odkazy

PubMed 25634617
PubMed Central PMC4311230
DOI 10.1182/blood-2014-09-600874
PII: S0006-4971(20)35302-7
Knihovny.cz E-zdroje

An unresolved issue in chronic lymphocytic leukemia (CLL) is whether IGHV3-21 gene usage, in general, or the expression of stereotyped B-cell receptor immunoglobulin defining subset #2 (IGHV3-21/IGLV3-21), in particular, determines outcome for IGHV3-21-utilizing cases. We reappraised this issue in 8593 CLL patients of whom 437 (5%) used the IGHV3-21 gene with 254/437 (58%) classified as subset #2. Within subset #2, immunoglobulin heavy variable (IGHV)-mutated cases predominated, whereas non-subset #2/IGHV3-21 was enriched for IGHV-unmutated cases (P = .002). Subset #2 exhibited significantly shorter time-to-first-treatment (TTFT) compared with non-subset #2/IGHV3-21 (22 vs 60 months, P = .001). No such difference was observed between non-subset #2/IGHV3-21 vs the remaining CLL with similar IGHV mutational status. In conclusion, IGHV3-21 CLL should not be axiomatically considered a homogeneous entity with adverse prognosis, given that only subset #2 emerges as uniformly aggressive, contrasting non-subset #2/IGVH3-21 patients whose prognosis depends on IGHV mutational status as the remaining CLL.

1st Department of Propaedeutic Medicine University of Athens Athens Greece;

Central European Institute of Technology Masaryk University and University Hospital Brno Brno Czech Republic;

Central European Institute of Technology Masaryk University Brno Czech Republic

Department of Haematology Royal Bournemouth Hospital Bournemouth United Kingdom;

Department of Hemato Oncology Belfast City Hospital Belfast United Kingdom;

Department of Hematology Erasmus Medical Center University Medical Center Rotterdam Rotterdam The Netherlands;

Department of Hematology Rigshospitalet Copenhagen Denmark;

Department of Immunology Erasmus Medical Center University Medical Center Rotterdam Rotterdam The Netherlands;

Department of Immunology Genetics and Pathology Science for Life Laboratory Uppsala University Uppsala Sweden;

Department of Immunology Genetics and Pathology Science for Life Laboratory Uppsala University Uppsala Sweden; Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece;

Department of Immunology Genetics and Pathology Science for Life Laboratory Uppsala University Uppsala Sweden; Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece; Hematology Department and Hematopoietic Cell Transplantation Unit Georgios Papanicolaou Hospital Thessaloniki Greece;

Department of Immunology Mayo Clinic Rochester MN; and

Department of Informatics Aristotle University of Thessaloniki Thessaloniki Greece;

Department of Medicine Hematology and Clinical Immunology Branch Padua University School of Medicine Italy; Venetian Institute of Molecular Medicine Padova Italy;

Department of Medicine Solna Clinical Epidemiology Unit Karolinska Institutet Stockholm Sweden;

Division of Hematology Department of Medicine Mayo Clinic Rochester MN;

Hematology Department and Hematopoietic Cell Transplantation Unit Georgios Papanicolaou Hospital Thessaloniki Greece;

Hematology Department and University Pierre et Marie Curie Hopital Pitie Salpetriere Paris France;

Hematology Department Nikea General Hospital Piraeus Greece;

Hôpital Pitié Salpêtrière Service d'Hématologie Biologique Paris France;

ImMunoGeneTics Université de Montpellier Laboratoire d'Informatique Gaspard Monge Institut de Génétique Humaine Montpellier France;

Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece;

Lund University and Hospital Department of Hematology Lund Stem Cell Center Lund Sweden;

Molecular Pathology Unit and Haematology Department Niguarda Cancer Center Niguarda Ca' Granda Hospital Milan Italy;

The Feinstein Institute for Medical Research North Shore Long Island Jewish Health System Manhasset NY;

Università Vita Salute San Raffaele Milan Italy; Division of Molecular Oncology and Department of Onco Hematology Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute Milan Italy;

Zobrazit více v PubMed

Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–1847. PubMed

Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–1854. PubMed

Hamblin TJ, Davis ZA, Oscier DG. Determination of how many immunoglobulin variable region heavy chain mutations are allowable in unmutated chronic lymphocytic leukaemia - long-term follow up of patients with different percentages of mutations. Br J Haematol. 2008;140(3):320–323. PubMed

Kröber A, Seiler T, Benner A, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100(4):1410–1416. PubMed

Langerak AW, Davi F, Ghia P, et al. European Research Initiative on CLL (ERIC) Immunoglobulin sequence analysis and prognostication in CLL: guidelines from the ERIC review board for reliable interpretation of problematic cases. Leukemia. 2011;25(6):979–984. PubMed

Ghia P, Stamatopoulos K, Belessi C, et al. European Research Initiative on CLL. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia. 2007;21(1):1–3. PubMed

Agathangelidis A, Vardi A, Baliakas P, Stamatopoulos K. Stereotyped B-cell receptors in chronic lymphocytic leukemia. Leuk Lymphoma. 2014;55(10):2252–2261. PubMed

Bomben R, Dal-Bo M, Benedetti D, et al. Expression of mutated IGHV3-23 genes in chronic lymphocytic leukemia identifies a disease subset with peculiar clinical and biological features. Clin Cancer Res. 2010;16(2):620–628. PubMed

Stamatopoulos K, Belessi C, Moreno C, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: pathogenetic implications and clinical correlations. Blood. 2007;109(1):259–270. PubMed

Thorsélius M, Kröber A, Murray F, et al. Strikingly homologous immunoglobulin gene rearrangements and poor outcome in VH3-21-using chronic lymphocytic leukemia patients independent of geographic origin and mutational status. Blood. 2006;107(7):2889–2894. PubMed

Tobin G, Thunberg U, Johnson A, et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood. 2003;101(12):4952–4957. PubMed

Tobin G, Thunberg U, Johnson A, et al. Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood. 2002;99(6):2262–2264. PubMed

Bomben R, Dal Bo M, Capello D, et al. Comprehensive characterization of IGHV3-21-expressing B-cell chronic lymphocytic leukemia: an Italian multicenter study. Blood. 2007;109(7):2989–2998. PubMed

Ghia P, Stamatopoulos K, Belessi C, et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood. 2005;105(4):1678–1685. PubMed

Agathangelidis A, Darzentas N, Hadzidimitriou A, et al. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012;119(19):4467–4475. PubMed PMC

Marincevic M, Cahill N, Gunnarsson R, et al. High-density screening reveals a different spectrum of genomic aberrations in chronic lymphocytic leukemia patients with ‘stereotyped’ IGHV3-21 and IGHV4-34 B-cell receptors. Haematologica. 2010;95(9):1519–1525. PubMed PMC

Rossi D, Spina V, Bomben R, et al. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. Blood. 2013;121(24):4902–4905. PubMed

Strefford JC, Sutton LA, Baliakas P, et al. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia. 2013;27(11):2196–2199. PubMed

Cahill N, Sutton LA, Jansson M, et al. IGHV3-21 gene frequency in a Swedish cohort of patients with newly diagnosed chronic lymphocytic leukemia. Clin Lymphoma Myeloma Leuk. 2012;12(3):201–206. PubMed

Ghia EM, Jain S, Widhopf GF, II, et al. Use of IGHV3-21 in chronic lymphocytic leukemia is associated with high-risk disease and reflects antigen-driven, post-germinal center leukemogenic selection. Blood. 2008;111(10):5101–5108. PubMed PMC

Baliakas P, Iskas M, Gardiner A, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249–255. PubMed

Murray F, Darzentas N, Hadzidimitriou A, et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood. 2008;111(3):1524–1533. PubMed

Thunberg U, Johnson A, Roos G, et al. CD38 expression is a poor predictor for VH gene mutational status and prognosis in chronic lymphocytic leukemia. Blood. 2001;97(6):1892–1894. PubMed

Stevenson FK, Caligaris-Cappio F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood. 2004;103(12):4389–4395. PubMed

Baliakas P, Hadzidimitriou A, Sutton LA, et al. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol. 2014;1(2):e74–e84. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The non-canonical BAF chromatin remodeling complex is a novel target of spliceosome dysregulation in SF3B1-mutated chronic lymphocytic leukemia

. 2024 Nov ; 38 (11) : 2429-2442. [epub] 20240911

Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities

. 2024 Jul ; 8 (7) : e113. [epub] 20240721

Consistent B Cell Receptor Immunoglobulin Features Between Siblings in Familial Chronic Lymphocytic Leukemia

. 2021 ; 11 () : 740083. [epub] 20210826

Higher-order connections between stereotyped subsets: implications for improved patient classification in CLL

. 2021 Mar 11 ; 137 (10) : 1365-1376.

The presence of CLL-associated stereotypic B cell receptors in the normal BCR repertoire from healthy individuals increases with age

. 2019 ; 16 () : 22. [epub] 20190828

Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia

. 2019 Feb ; 104 (2) : 360-369. [epub] 20180927

No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy

. 2018 Apr ; 103 (4) : e158-e161. [epub] 20171221

Restrictions in the T-cell repertoire of chronic lymphocytic leukemia: high-throughput immunoprofiling supports selection by shared antigenic elements

. 2017 Jul ; 31 (7) : 1555-1561. [epub] 20161125

Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations

. 2017 Jul ; 31 (7) : 1477-1481. [epub] 20170425

Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification

. 2017 Jun ; 102 (6) : 968-971.

ATM mutations in major stereotyped subsets of chronic lymphocytic leukemia: enrichment in subset #2 is associated with markedly short telomeres

. 2016 Sep ; 101 (9) : e369-73. [epub] 20160616

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...