Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities

. 2024 Jul ; 8 (7) : e113. [epub] 20240721

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39035106

Patients with chronic lymphocytic leukemia (CLL) exhibit diverse clinical outcomes. An expanding array of genetic tests is now employed to facilitate the identification of patients with high-risk disease and inform treatment decisions. These tests encompass molecular cytogenetic analysis, focusing on recurrent chromosomal alterations, particularly del(17p). Additionally, sequencing is utilized to identify TP53 mutations and to determine the somatic hypermutation status of the immunoglobulin heavy variable gene. Concurrently, a swift advancement of targeted treatment has led to the implementation of novel strategies for patients with CLL, including kinase and BCL2 inhibitors. This review explores both current and emerging diagnostic tests aimed at identifying high-risk patients who should benefit from targeted therapies. We outline existing treatment paradigms, emphasizing the importance of matching the right treatment to the right patient beyond genetic stratification, considering the crucial balance between safety and efficacy. We also take into consideration the practical and logistical issues when choosing a management strategy for each individual patient. Furthermore, we delve into the mechanisms underlying therapy resistance and stress the relevance of monitoring measurable residual disease to guide treatment decisions. Finally, we underscore the necessity of aggregating real-world data, adopting a global perspective, and ensuring patient engagement. Taken together, we argue that precision medicine is not the mere application of precision diagnostics and accessibility of precision therapies in CLL but encompasses various aspects of the patient journey (e.g., lifestyle exposures and comorbidities) and their preferences toward achieving true personalized medicine for patients with CLL.

Zobrazit více v PubMed

Mollstedt J, Mansouri L, Rosenquist R. Precision diagnostics in chronic lymphocytic leukemia: past, present and future. Front Oncol. 2023;13:1146486. 10.3389/fonc.2023.1146486 PubMed DOI PMC

Alaggio R, Amador C, Anagnostopoulos I, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720‐1748. 10.1038/s41375-022-01620-2 PubMed DOI PMC

Hallek M, Cheson BD, Catovsky D, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745‐2760. 10.1182/blood-2017-09-806398 PubMed DOI

Döhner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910‐1916. 10.1056/NEJM200012283432602 PubMed DOI

Stilgenbauer S, Schnaiter A, Paschka P, et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood. 2014;123(21):3247‐3254. 10.1182/blood-2014-01-546150 PubMed DOI

Malcikova J, Tausch E, Rossi D, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia‐update on methodological approaches and results interpretation. Leukemia. 2018;32(5):1070‐1080. 10.1038/s41375-017-0007-7 PubMed DOI PMC

Malcikova J, Pavlova S, Kunt Vonkova B, et al. Low‐burden TP53 mutations in CLL: clinical impact and clonal evolution within the context of different treatment options. Blood. 2021;138(25):2670‐2685. 10.1182/blood.2020009530 PubMed DOI PMC

Rossi D, Khiabanian H, Spina V, et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139‐2147. 10.1182/blood-2013-11-539726 PubMed DOI PMC

Lazarian G, Cymbalista F, Baran‐Marszak F. Impact of low‐burden TP53 mutations in the management of CLL. Front Oncol. 2022;12:841630. 10.3389/fonc.2022.841630 PubMed DOI PMC

Malcikova J, Pavlova S, Baliakas P, et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia‐2024 update. Leukemia. 2024. Published online May 16, 2024. 10.1038/s41375-024-02267-x PubMed DOI PMC

Woyach JA, Perez Burbano G, Ruppert AS, et al. Follow‐up from the A041202 study shows continued efficacy of ibrutinib regimens for older adults with CLL. Blood. 2024;143:1616‐1627. 10.1182/blood.2023021959 PubMed DOI PMC

Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib treatment for first‐line and relapsed/refractory chronic lymphocytic leukemia: final analysis of the pivotal phase Ib/II PCYC‐1102 study. Clin Cancer Res. 2020;26(15):3918‐3927. 10.1158/1078-0432.CCR-19-2856 PubMed DOI PMC

Kater AP, Wu JQ, Kipps T, et al. Venetoclax plus rituximab in relapsed chronic lymphocytic leukemia: 4‐year results and evaluation of impact of genomic complexity and gene mutations from the MURANO phase III Study. J Clin Oncol. 2020;38(34):4042‐4054. 10.1200/JCO.20.00948 PubMed DOI PMC

Tausch E, Schneider C, Robrecht S, et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood. 2020;135(26):2402‐2412. 10.1182/blood.2019004492 PubMed DOI

Kennedy MC, Lowe SW. Mutant p53: it's not all one and the same. Cell Death Differ. 2022;29(5):983‐987. 10.1038/s41418-022-00989-y PubMed DOI PMC

Bonfiglio S, Sutton LA, Ljungström V, et al. BTK and PLCG2 remain unmutated in one‐third of patients with CLL relapsing on ibrutinib. Blood Adv. 2023;7(12):2794‐2806. 10.1182/bloodadvances.2022008821 PubMed DOI PMC

Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840‐1847. 10.1182/blood.V94.6.1840 PubMed DOI

Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848‐1854. 10.1182/blood.V94.6.1848 PubMed DOI

Baliakas P, Hadzidimitriou A, Sutton LA, et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 2015;29(2):329‐336. 10.1038/leu.2014.196 PubMed DOI

Agathangelidis A, Chatzidimitriou A, Chatzikonstantinou T, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: the 2022 update of the recommendations by ERIC, the European Research Initiative on CLL. Leukemia. 2022;36(8):1961‐1968. 10.1038/s41375-022-01604-2 PubMed DOI PMC

Al‐Sawaf O, Zhang C, Jin HY, et al. Transcriptomic profiles and 5‐year results from the randomized CLL14 study of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in chronic lymphocytic leukemia. Nat Commun. 2023;14(1):2147. 10.1038/s41467-023-37648-w PubMed DOI PMC

Eichhorst B, Niemann CU, Kater AP, et al. First‐line venetoclax combinations in chronic lymphocytic leukemia. N Engl J Med. 2023;388(19):1739‐1754. 10.1056/NEJMoa2213093 PubMed DOI

Kater AP, Owen C, Moreno C, et al. Fixed‐duration ibrutinib‐venetoclax in patients with chronic lymphocytic leukemia and comorbidities. NEJM Evid. 2022;1(7):EVIDoa2200006. 10.1056/EVIDoa2200006 PubMed DOI

Munir T, Cairns DA, Bloor A, et al. Chronic lymphocytic leukemia therapy guided by measurable residual disease. N Engl J Med. 2024;390(4):326‐337. 10.1056/NEJMoa2310063 PubMed DOI

Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib‐rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019;381(5):432‐443. 10.1056/NEJMoa1817073 PubMed DOI PMC

Sharman JP, Egyed M, Jurczak W, et al. Efficacy and safety in a 4‐year follow‐up of the ELEVATE‐TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment‐naïve chronic lymphocytic leukemia. Leukemia. 2022;36(4):1171‐1175. 10.1038/s41375-021-01485-x PubMed DOI PMC

Tam CS, Brown JR, Kahl BS, et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): a randomised, controlled, phase 3 trial. Lancet Oncol. 2022;23(8):1031‐1043. 10.1016/S1470-2045(22)00293-5 PubMed DOI

Burger JA, Barr PM, Robak T, et al. Long‐term efficacy and safety of first‐line ibrutinib treatment for patients with CLL/SLL: 5 years of follow‐up from the phase 3 RESONATE‐2 study. Leukemia. 2020;34(3):787‐798. 10.1038/s41375-019-0602-x PubMed DOI PMC

Agathangelidis A, Chatzidimitriou A, Gemenetzi K, et al. Higher‐order connections between stereotyped subsets: implications for improved patient classification in CLL. Blood. 2021;137(10):1365‐1376. 10.1182/blood.2020007039 PubMed DOI PMC

Agathangelidis A, Darzentas N, Hadzidimitriou A, et al. Stereotyped B‐cell receptors in one‐third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012;119(19):4467‐4475. 10.1182/blood-2011-11-393694 PubMed DOI PMC

Messmer BT, Albesiano E, Efremov DG, et al. Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia. J Exp Med. 2004;200(4):519‐525. 10.1084/jem.20040544 PubMed DOI PMC

Agathangelidis A, Chatzikonstantinou T, Stamatopoulos K. B cell receptor immunoglobulin stereotypy in chronic lymphocytic leukemia: key to understanding disease biology and stratifying patients. Sem Hematol. 2024;61:91‐99. 10.1053/j.seminhematol.2023.12.005 PubMed DOI

Stamatopoulos K, Agathangelidis A, Rosenquist R, Ghia P. Antigen receptor stereotypy in chronic lymphocytic leukemia. Leukemia. 2017;31(2):282‐291. 10.1038/leu.2016.322 PubMed DOI

Tobin G, Thunberg U, Johnson A, et al. Chronic lymphocytic leukemias utilizing the VH3‐21 gene display highly restricted Vλ2‐14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood. 2003;101(12):4952‐4957. 10.1182/blood-2002-11-3485 PubMed DOI

Baliakas P, Agathangelidis A, Hadzidimitriou A, et al. Not all IGHV3‐21 chronic lymphocytic leukemias are equal: prognostic considerations. Blood. 2015;125(5):856‐859. 10.1182/blood-2014-09-600874 PubMed DOI PMC

Jaramillo S, Agathangelidis A, Schneider C, et al. Prognostic impact of prevalent chronic lymphocytic leukemia stereotyped subsets: analysis within prospective clinical trials of the German CLL Study Group (GCLLSG). Haematologica. 2020;105(11):2598‐2607. 10.3324/haematol.2019.231027 PubMed DOI PMC

Thompson PA, Bazinet A, Wierda WG, et al. Sustained remissions in CLL after frontline FCR treatment with very‐long‐term follow‐up. Blood. 2023;142(21):1784‐1788. 10.1182/blood.2023020158 PubMed DOI

Davi F, Langerak AW, de Septenville AL, et al. Immunoglobulin gene analysis in chronic lymphocytic leukemia in the era of next generation sequencing. Leukemia. 2020;34(10):2545‐2551. 10.1038/s41375-020-0923-9 PubMed DOI PMC

Ghia P, Stamatopoulos K, Belessi C, et al. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia. 2007;21(1):1‐3. 10.1038/sj.leu.2404457 PubMed DOI

Rosenquist R, Ghia P, Hadzidimitriou A, et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations. Leukemia. 2017;31(7):1477‐1481. 10.1038/leu.2017.125 PubMed DOI PMC

Juliusson G, Oscier DG, Fitchett M, et al. Prognostic subgroups in B‐cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med. 1990;323(11):720‐724. 10.1056/NEJM199009133231105 PubMed DOI

Baliakas P, Jeromin S, Iskas M, et al. Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact. Blood. 2019;133(11):1205‐1216. 10.1182/blood-2018-09-873083 PubMed DOI PMC

Leeksma AC, Baliakas P, Moysiadis T, et al. Genomic arrays identify high‐risk chronic lymphocytic leukemia with genomic complexity: a multi‐center study. Haematologica. 2020;106(1):87‐97. 10.3324/haematol.2019.239947 PubMed DOI PMC

Baliakas P, Espinet B, Mellink C, et al. Cytogenetics in chronic lymphocytic leukemia: ERIC perspectives and recommendations. HemaSphere. 2022;6(4):e707. 10.1097/HS9.0000000000000707 PubMed DOI PMC

Fürstenau M, Thus YJ, Robrecht S, et al. High karyotypic complexity is an independent prognostic factor in patients with CLL treated with venetoclax combinations. Blood. 2023;142(5):446‐459. 10.1182/blood.2023019634 PubMed DOI

Kittai AS, Miller C, Goldstein D, et al. The impact of increasing karyotypic complexity and evolution on survival in patients with CLL treated with ibrutinib. Blood. 2021;138(23):2372‐2382. 10.1182/blood.2020010536 PubMed DOI

Landau DA, Tausch E, Taylor‐Weiner AN, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525‐530. 10.1038/nature15395 PubMed DOI PMC

Puente XS, Beà S, Valdés‐Mas R, et al. Non‐coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526(7574):519‐524. 10.1038/nature14666 PubMed DOI

Puente XS, Pinyol M, Quesada V, et al. Whole‐genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101‐105. 10.1038/nature10113 PubMed DOI PMC

Wang L, Lawrence MS, Wan Y, et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med. 2011;365(26):2497‐2506. 10.1056/NEJMoa1109016 PubMed DOI PMC

Knisbacher BA, Lin Z, Hahn CK, et al. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat Genet. 2022;54(11):1664‐1674. 10.1038/s41588-022-01140-w PubMed DOI PMC

Robbe P, Ridout KE, Vavoulis DV, et al. Whole‐genome sequencing of chronic lymphocytic leukemia identifies subgroups with distinct biological and clinical features. Nat Genet. 2022;54(11):1675‐1689. 10.1038/s41588-022-01211-y PubMed DOI PMC

Mansouri L, Thorvaldsdottir B, Sutton LA, et al. Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY. Leukemia. 2023;37(2):339‐347. 10.1038/s41375-022-01802-y PubMed DOI PMC

Beekman R, Chapaprieta V, Russiñol N, et al. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat Med. 2018;24(6):868‐880. 10.1038/s41591-018-0028-4 PubMed DOI PMC

Giacopelli B, Zhao Q, Ruppert AS, et al. Developmental subtypes assessed by DNA methylation‐iPLEX forecast the natural history of chronic lymphocytic leukemia. Blood. 2019;134(8):688‐698. 10.1182/blood.2019000490 PubMed DOI PMC

Queirós AC, Villamor N, Clot G, et al. A B‐cell epigenetic signature defines three biologic subgroups of chronic lymphocytic leukemia with clinical impact. Leukemia. 2015;29(3):598‐605. 10.1038/leu.2014.252 PubMed DOI

Tsagiopoulou M, Papakonstantinou N, Moysiadis T, et al. DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clin Epigenetics. 2019;11(1):177. 10.1186/s13148-019-0783-1 PubMed DOI PMC

Wojdacz TK, Amarasinghe HE, Kadalayil L, et al. Clinical significance of DNA methylation in chronic lymphocytic leukemia patients: results from 3 UK clinical trials. Blood Adv. 2019;3(16):2474‐2481. 10.1182/bloodadvances.2019000237 PubMed DOI PMC

Herbst SA, Vesterlund M, Helmboldt AJ, et al. Proteogenomics refines the molecular classification of chronic lymphocytic leukemia. Nat Commun. 2022;13(1):6226. 10.1038/s41467-022-33385-8 PubMed DOI PMC

Banerji V, Aw A, Robinson S, Doucette S, Christofides A, Sehn LH. Bruton tyrosine kinase inhibitors for the frontline treatment of chronic lymphocytic leukemia. Curr Oncol. 2020;27(6):645‐655. 10.3747/co.27.6795 PubMed DOI PMC

Rossi D, Gerber B, Stüssi G. Predictive and prognostic biomarkers in the era of new targeted therapies for chronic lymphocytic leukemia. Leuk Lymphoma. 2017;58(7):1548‐1560. 10.1080/10428194.2016.1250264 PubMed DOI

Al‐Sawaf O, Zhang C, Lu T, et al. Minimal residual disease dynamics after venetoclax‐obinutuzumab treatment: extended off‐treatment follow‐up from the randomized CLL14 study. J Clin Oncol. 2021;39(36):4049‐4060. 10.1200/JCO.21.01181 PubMed DOI PMC

Kurtz DM, Esfahani MS, Scherer F, et al. Dynamic risk profiling using serial tumor biomarkers for personalized outcome prediction. Cell. 2019;178(3):699‐713.e19. 10.1016/j.cell.2019.06.011 PubMed DOI PMC

Dighiero G, Maloum K, Desablens B, et al. Chlorambucil in indolent chronic lymphocytic leukemia. N Engl J Med. 1998;338(21):1506‐1514. 10.1056/NEJM199805213382104 PubMed DOI

Herling CD, Cymbalista F, Groß‐Ophoff‐Müller C, et al. Early treatment with FCR versus watch and wait in patients with stage Binet A high‐risk chronic lymphocytic leukemia (CLL): a randomized phase 3 trial. Leukemia. 2020;34(8):2038‐2050. 10.1038/s41375-020-0747-7 PubMed DOI PMC

Hoechstetter MA, Busch R, Eichhorst B, et al. Early, risk‐adapted treatment with fludarabine in Binet stage A chronic lymphocytic leukemia patients: results of the CLL1 trial of the German CLL study group. Leukemia. 2017;31(12):2833‐2837. 10.1038/leu.2017.246 PubMed DOI

Langerbeins P, Zhang C, Robrecht S, et al. The CLL12 trial: ibrutinib vs placebo in treatment‐naïve, early‐stage chronic lymphocytic leukemia. Blood. 2022;139(2):177‐187. 10.1182/blood.2021010845 PubMed DOI

Laurenti L, Gaidano G, Mauro FR, et al. What are the attributes prioritized in the choice of therapy in chronic lymphocytic leukemia? A patient‐physician cross‐matching analysis of a discrete choice experiment. HemaSphere. 2022;6(9):e771. 10.1097/HS9.0000000000000771 PubMed DOI PMC

Lévy V, Delmer A, Cymbalista F. Frontline treatment in CLL: the case for time‐limited treatment. Hematology. 2021;2021(1):59‐67. 10.1182/hematology.2021000233 PubMed DOI PMC

Salem JE, Manouchehri A, Bretagne M, et al. Cardiovascular toxicities associated with ibrutinib. J Am Coll Cardiol. 2019;74(13):1667‐1678. 10.1016/j.jacc.2019.07.056 PubMed DOI

Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441‐3452. 10.1200/JCO.21.01210 PubMed DOI PMC

Brown JR, Moslehi J, Ewer MS, et al. Incidence of and risk factors for major haemorrhage in patients treated with ibrutinib: an integrated analysis. Br J Haematol. 2019;184(4):558‐569. 10.1111/bjh.15690 PubMed DOI PMC

Lipsky A, Lamanna N. Managing toxicities of Bruton tyrosine kinase inhibitors. Hematology. 2020;2020(1):336‐345. 10.1182/hematology.2020000118 PubMed DOI PMC

Gribben JG. Practical management of tumour lysis syndrome in venetoclax‐treated patients with chronic lymphocytic leukaemia. Br J Haematol. 2020;188(6):844‐851. 10.1111/bjh.16345 PubMed DOI PMC

Al‐Sawaf O, Zhang C, Tandon M, et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow‐up results from a multicentre, open‐label, randomised, phase 3 trial. Lancet Oncol. 2020;21(9):1188‐1200. 10.1016/S1470-2045(20)30443-5 PubMed DOI

Prosty C, Katergi K, Nguyen A, et al. Risk of infectious adverse events of venetoclax therapy for hematologic malignancies: a systematic review and meta‐analysis of RCTs. Blood Adv. 2024;8(4):857‐866. 10.1182/bloodadvances.2023011964 PubMed DOI PMC

Tam CS, Allan JN, Siddiqi T, et al. Fixed‐duration ibrutinib plus venetoclax for first‐line treatment of CLL: primary analysis of the CAPTIVATE FD cohort. Blood. 2022;139(22):3278‐3289. 10.1182/blood.2021014488 PubMed DOI PMC

Huber H, Tausch E, Schneider C, et al. Final analysis of the CLL2‐GIVe trial: obinutuzumab, ibrutinib, and venetoclax for untreated CLL with del(17p)/TP53mut. Blood. 2023;142(11):961‐972. 10.1182/blood.2023020013 PubMed DOI

Furman RR, Cheng S, Lu P, et al. Ibrutinib resistance in chronic lymphocytic leukemia. N Engl J Med. 2014;370(24):2352‐2354. 10.1056/NEJMc1402716 PubMed DOI PMC

Woyach JA, Furman RR, Liu TM, et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286‐2294. 10.1056/NEJMoa1400029 PubMed DOI PMC

Mato AR, Woyach JA, Brown JR, et al. Pirtobrutinib after a covalent BTK inhibitor in chronic lymphocytic leukemia. N Engl J Med. 2023;389(1):33‐44. 10.1056/NEJMoa2300696 PubMed DOI

Estupiñán HY, Wang Q, Berglöf A, et al. BTK gatekeeper residue variation combined with cysteine 481 substitution causes super‐resistance to irreversible inhibitors acalabrutinib, ibrutinib and zanubrutinib. Leukemia. 2021;35(5):1317‐1329. 10.1038/s41375-021-01123-6 PubMed DOI PMC

Maddocks KJ, Ruppert AS, Lozanski G, et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015;1(1):80‐87. 10.1001/jamaoncol.2014.218 PubMed DOI PMC

Quinquenel A, Fornecker LM, Letestu R, et al. Prevalence of BTK and PLCG2 mutations in a real‐life CLL cohort still on ibrutinib after 3 years: a FILO group study. Blood. 2019;134(7):641‐644. 10.1182/blood.2019000854 PubMed DOI

Liu TM, Woyach JA, Zhong Y, et al. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib‐resistant CLL confers BTK independency upon B‐cell receptor activation. Blood. 2015;126(1):61‐68. 10.1182/blood-2015-02-626846 PubMed DOI PMC

Woyach JA, Ghia P, Byrd JC, et al. B‐cell receptor pathway mutations are infrequent in patients with chronic lymphocytic leukemia on continuous ibrutinib therapy. Clin Cancer Res. 2023;29(16):3065‐3073. 10.1158/1078-0432.CCR-22-3887 PubMed DOI PMC

Blombery P, Anderson MA, Gong J, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discovery. 2019;9(3):342‐353. 10.1158/2159-8290.CD-18-1119 PubMed DOI

Blombery P, Thompson ER, Nguyen T, et al. Multiple BCL2 mutations cooccurring with Gly101Val emerge in chronic lymphocytic leukemia progression on venetoclax. Blood. 2020;135(10):773‐777. 10.1182/blood.2019004205 PubMed DOI PMC

Tausch E, Close W, Dolnik A, et al. Venetoclax resistance and acquired BCL2 mutations in chronic lymphocytic leukemia. Haematologica. 2019;104(9):e434‐e437. 10.3324/haematol.2019.222588 PubMed DOI PMC

Liu J, Li S, Wang Q, et al. Sonrotoclax overcomes BCL2 G101V mutation‐induced venetoclax resistance in preclinical models of hematologic malignancy. Blood. 2024;143:1825‐1836. 10.1182/blood.2023019706 PubMed DOI PMC

Khalsa JK, Cha J, Utro F, et al. Genetic events associated with venetoclax resistance in CLL identified by whole‐exome sequencing of patient samples. Blood. 2023;142(5):421‐433. 10.1182/blood.2022016600 PubMed DOI PMC

Jain N, Croner LJ, Allan JN, et al. Absence of BTK, BCL2, and PLCG2 mutations in chronic lymphocytic leukemia relapsing after first‐line treatment with fixed‐duration ibrutinib plus venetoclax. Clin Cancer Res. 2023;30(3):OF1‐OF8. 10.1158/1078-0432.CCR-22-3934 PubMed DOI PMC

Kater AP, Seymour JF, Hillmen P, et al. Fixed duration of venetoclax‐rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival: post‐treatment follow‐up of the MURANO phase III study. J Clin Oncol. 2019;37(4):269‐277. 10.1200/JCO.18.01580 PubMed DOI

Rawstron AC, Böttcher S, Letestu R, et al. Improving efficiency and sensitivity: European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia. 2013;27(1):142‐149. 10.1038/leu.2012.216 PubMed DOI

Rawstron AC, Fazi C, Agathangelidis A, et al. A complementary role of multiparameter flow cytometry and high‐throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia: an European Research Initiative on CLL study. Leukemia. 2016;30(4):929‐936. 10.1038/leu.2015.313 PubMed DOI PMC

Rawstron AC, Villamor N, Ritgen M, et al. International standardized approach for flow cytometric residual disease monitoring in chronic lymphocytic leukaemia. Leukemia. 2007;21(5):956‐964. 10.1038/sj.leu.2404584 PubMed DOI

Hengeveld PJ, van der Klift MY, Kolijn PM, et al. Detecting measurable residual disease beyond 10‐4 by an IGHV leader‐based NGS approach improves prognostic stratification in CLL. Blood. 2023;141(5):519‐528. 10.1182/blood.2022017411 PubMed DOI

Schilhabel A, Szczepanowski M, van Gastel‐Mol EJ, et al. Patient specific real‐time PCR in precision medicine—validation of IG/TR based MRD assessment in lymphoid leukemia. Front Oncol. 2023;12:1111209. 10.3389/fonc.2022.1111209 PubMed DOI PMC

van der Velden VHJ, Cazzaniga G, Schrauder A, et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real‐time quantitative PCR data. Leukemia. 2007;21(4):604‐611. 10.1038/sj.leu.2404586 PubMed DOI

FDA . Accessed February 20, 2024. https://www.accessdata.fda.gov/cdrh_docs/reviews/K200009.pdf

Kovacs G, Robrecht S, Fink AM, et al. Minimal residual disease assessment improves prediction of outcome in patients with chronic lymphocytic leukemia (CLL) who achieve partial response: comprehensive analysis of two phase III studies of the German CLL study group. J Clin Oncol. 2016;34(31):3758‐3765. 10.1200/JCO.2016.67.1305 PubMed DOI

Kwok M, Rawstron AC, Varghese A, et al. Minimal residual disease is an independent predictor for 10‐year survival in CLL. Blood. 2016;128(24):2770‐2773. 10.1182/blood-2016-05-714162 PubMed DOI

Cramer P, von Tresckow J, Bahlo J, et al. Bendamustine followed by obinutuzumab and venetoclax in chronic lymphocytic leukaemia (CLL2‐BAG): primary endpoint analysis of a multicentre, open‐label, phase 2 trial. Lancet Oncol. 2018;19(9):1215‐1228. 10.1016/S1470-2045(18)30414-5 PubMed DOI

Hillmen P, Rawstron AC, Brock K, et al. Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia: the CLARITY study. J Clin Oncol. 2019;37(30):2722‐2729. 10.1200/JCO.19.00894 PubMed DOI PMC

Wierda WG, Allan JN, Siddiqi T, et al. Ibrutinib plus venetoclax for first‐line treatment of chronic lymphocytic leukemia: primary analysis results from the minimal residual disease cohort of the randomized phase ii CAPTIVATE study. J Clin Oncol. 2021;39(34):3853‐3865. 10.1200/JCO.21.00807 PubMed DOI PMC

Davids MS, Lampson BL, Tyekucheva S, et al. Acalabrutinib, venetoclax, and obinutuzumab as frontline treatment for chronic lymphocytic leukaemia: a single‐arm, open‐label, phase 2 study. Lancet Oncol. 2021;22(10):1391‐1402. 10.1016/S1470-2045(21)00455-1 PubMed DOI

Kater AP, Levin MD, Dubois J, et al. Minimal residual disease‐guided stop and start of venetoclax plus ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia (HOVON141/VISION): primary analysis of an open‐label, randomised, phase 2 trial. Lancet Oncol. 2022;23(6):818‐828. 10.1016/S1470-2045(22)00220-0 PubMed DOI

Rawstron A, Webster N, Dalal S, et al. Using peripheral blood (PB) measurable residual disease (MRD) levels to predict <0.01% bone marrow disease (BM uMRD4): identification of effective PB targets for CLL treatment cessation in the ibrutinib+venetoclax arm of the FLAIR trial. Blood. 2023;142(Suppl 1):632. 10.1182/blood-2023-187943 DOI

Fürstenau M, Ritgen M, Robrecht S, et al. First‐line venetoclax combinations in fit patients with CLL: 4‐year follow‐up and NGS‐based MRD analysis from the phase 3 GAIA/CLL13 trial. Blood. 2023;142(Suppl 1):635. 10.1182/blood-2023-173709 DOI

Baliakas P, Hadzidimitriou A, Sutton LA, et al. Clinical effect of stereotyped B‐cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol. 2014;1(2):e74‐e84. 10.1016/S2352-3026(14)00005-2 PubMed DOI

Chatzikonstantinou T, Scarfò L, Karakatsoulis G, et al. Other malignancies in the history of CLL: an international multicenter study conducted by ERIC, the European Research Initiative on CLL, in HARMONY. EClinicalMedicine. 2023;65:102307. 10.1016/j.eclinm.2023.102307 PubMed DOI PMC

Mato AR, Barrientos JC, Ghosh N, et al. Prognostic testing and treatment patterns in chronic lymphocytic leukemia in the era of novel targeted therapies: results from the informCLL registry. Clin Lymphoma Myeloma Leukemia. 2020;20(3):174‐183.e3. 10.1016/j.clml.2019.10.009 PubMed DOI PMC

Mato AR, Hess LM, Chen Y, et al. Outcomes for patients with chronic lymphocytic leukemia (CLL) previously treated with both a covalent BTK and BCL2 inhibitor in the United States: a real‐world database study. Clin Lymphoma Myeloma Leukemia. 2023;23(1):57‐67. 10.1016/j.clml.2022.09.007 PubMed DOI

Roeker LE, Fox CP, Eyre TA, et al. Tumor lysis, adverse events, and dose adjustments in 297 venetoclax‐treated CLL patients in routine clinical practice. Clin Cancer Res. 2019;25(14):4264‐4270. 10.1158/1078-0432.CCR-19-0361 PubMed DOI PMC

Antic D, Milic N, Chatzikonstantinou T, et al. Thrombotic and bleeding complications in patients with chronic lymphocytic leukemia and severe COVID‐19: a study of ERIC, the European Research Initiative on CLL. J Hematol Oncol. 2022;15(1):116. 10.1186/s13045-022-01333-0 PubMed DOI PMC

Campanella A, Capasso A, Heltai S, et al. Additional booster doses in patients with chronic lymphocytic leukemia induce humoral and cellular immune responses to SARS‐CoV‐2 similar to natural infection regardless ongoing treatments: a study by ERIC, the European Research Initiative on CLL. Am J Hematol. 2024;99:745‐750. 10.1002/ajh.27218 PubMed DOI

Chatzikonstantinou T, Kapetanakis A, Scarfò L, et al. COVID‐19 severity and mortality in patients with CLL: an update of the international ERIC and Campus CLL study. Leukemia. 2021;35(12):3444‐3454. 10.1038/s41375-021-01450-8 PubMed DOI PMC

Herishanu Y, Avivi I, Aharon A, et al. Efficacy of the BNT162b2 mRNA COVID‐19 vaccine in patients with chronic lymphocytic leukemia. Blood. 2021;137(23):3165‐3173. 10.1182/blood.2021011568 PubMed DOI PMC

Mato AR, Roeker LE, Lamanna N, et al. Outcomes of COVID‐19 in patients with CLL: a multicenter international experience. Blood. 2020;136(10):1134‐1143. 10.1182/blood.2020006965 PubMed DOI PMC

Scarfò L, Chatzikonstantinou T, Rigolin GM, et al. COVID‐19 severity and mortality in patients with chronic lymphocytic leukemia: a joint study by ERIC, the European Research Initiative on CLL, and CLL Campus. Leukemia. 2020;34(9):2354‐2363. 10.1038/s41375-020-0959-x PubMed DOI PMC

Visentin A, Chatzikonstantinou T, Scarfò L, et al. The evolving landscape of COVID‐19 and post‐COVID condition in patients with chronic lymphocytic leukemia: a study by ERIC, the European research initiative on CLL. Am J Hematol. 2023;98(12):1856‐1868. 10.1002/ajh.27093 PubMed DOI

Agius R, Brieghel C, Andersen MA, et al. Machine learning can identify newly diagnosed patients with CLL at high risk of infection. Nat Commun. 2020;11(1):363. 10.1038/s41467-019-14225-8 PubMed DOI PMC

Chatzidimitriou A, Minga E, Chatzikonstantinou T, Moreno C, Stamatopoulos K, Ghia P. Challenges and solutions for collecting and analyzing real world data: the eric CLL database as an illustrative example. HemaSphere. 2020;4(5):e425. 10.1097/HS9.0000000000000425 PubMed DOI PMC

Karamanidou C, Xochelli A, Ghia P, Stamatopoulos K. How do hematologists communicate with patients suffering from chronic lymphocytic leukemia? Insights from the ERIC pilot study in greece. Eur J Health Commun. 2021;2(3):110‐135. 10.47368/ejhc.2021.306 DOI

Kyrou D, Stavrogianni K, Koulierakis G, Vrontaras N, Stamatopoulos K, Karamanidou C. The looming cancer: a qualitative study on the experience of living with chronic lymphocytic leukemia (CLL) before the initiation of treatment. Eur J Cancer. 2024. Published online February 28, 2024. 10.1155/2024/4034801 DOI

Kuusanmäki H, Kytölä S, Vänttinen I, et al. Ex vivo venetoclax sensitivity testing predicts treatment response in acute myeloid leukemia. Haematologica. 2023;108(7):1768‐1781. 10.3324/haematol.2022.281692 PubMed DOI PMC

Malani D, Kumar A, Brück O, et al. Implementing a functional precision medicine tumor board for acute myeloid leukemia. Cancer Discovery. 2022;12(2):388‐401. 10.1158/2159-8290.CD-21-0410 PubMed DOI PMC

CLLDB . Accessed February 20, 2024. https://www.imgt.org/CLLDBInterface/query

Yang S, Varghese AM, Sood N, et al. Ethnic and geographic diversity of chronic lymphocytic leukaemia. Leukemia. 2021;35(2):433‐439. 10.1038/s41375-020-01057-5 PubMed DOI

Chiattone CS, Gabus R, Pavlovsky MA, Akinola NO, Varghese AM, Arrais‐Rodrigues C. Management of chronic lymphocytic leukemia in less‐resourced countries. Cancer J. 2021;27(4):314‐319. 10.1097/PPO.0000000000000533 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace