Cytogenetic complexity in chronic lymphocytic leukemia: definitions, associations, and clinical impact
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30602617
PubMed Central
PMC6509568
DOI
10.1182/blood-2018-09-873083
PII: S0006-4971(20)42705-3
Knihovny.cz E-zdroje
- MeSH
- chromozomální aberace * MeSH
- chronická lymfatická leukemie genetika mortalita patologie MeSH
- cytogenetika metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- míra přežití MeSH
- mutace * MeSH
- nádorové biomarkery genetika MeSH
- nádorový supresorový protein p53 genetika MeSH
- následné studie MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- senioři MeSH
- somatická hypermutace imunoglobulinových genů genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorové biomarkery MeSH
- nádorový supresorový protein p53 MeSH
- TP53 protein, human MeSH Prohlížeč
Recent evidence suggests that complex karyotype (CK) defined by the presence of ≥3 chromosomal aberrations (structural and/or numerical) identified by using chromosome-banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges toward the routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with ≥5 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcomes, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and/or TP53 mutations [TP53abs]), and the expression of somatically hypermutated (M-CLL) or unmutated immunoglobulin heavy variable genes. Thus, they contrasted with CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs, and immunoglobulin heavy variable gene somatic hypermutation status, we propose a novel hierarchical model in which patients with high-CK exhibit the worst prognosis, whereas those with mutated CLL lacking CK or TP53abs, as well as CK with +12,+19, show the longest overall survival. Thus, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with ≥5 chromosomal aberrations emerges as prognostically adverse, independent of other biomarkers. Prospective clinical validation is warranted before ultimately incorporating high-CK in risk stratification of CLL.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Haematology Royal Bournemouth Hospital Bournemouth United Kingdom
Department of Hematology University Medical Centre Ljubljana Ljubljana Slovenia; and
Hematology Department and HCT Unit G Papanicolaou Hospital Thessaloniki Greece
Hematology Department and Sorbonne University Hopital Pitie Salpetriere INSERM U1138 Paris France
Hematology Division Department of Medicine University of Padua Padua Italy
Hematology Section St Anna University Hospital Ferrara Italy
Institute of Applied Biosciences Center for Research and Technology Hellas Thessaloniki Greece
Laboratoire d'hématologie Hopital Avicenne Assistance Publique Hôpitaux de Paris Paris France
Laboratori de Citogenètica Molecular Servei de Patologia Hospital del Mar Barcelona Spain
MLL Munich Leukemia Laboratory Munich Germany
Servei d'Hematologia Hospital Universitari de la Santa Creu i Sant Pau Barcelona Spain
Servei d'Hematología Hospital Vall d'Hebron Barcelona Spain
Servicio de Genética Citogenética Departamento de Genética Universidad de Navarra Pamplona Spain
Servicio de Hematología Consorcio Hospital General Universitario Valencia Spain
Zobrazit více v PubMed
Fabbri G, Dalla-Favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer. 2016;16(3):145-162. PubMed
Hallek M, Pflug N. Chronic lymphocytic leukemia. Ann Oncol. 2010;21(suppl 7):vii154-vii164. PubMed
Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352(8):804-815. PubMed
Baliakas P, Hadzidimitriou A, Sutton LA, et al. . Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. Lancet Haematol. 2014;1(2):e74-e84. PubMed
Baliakas P, Hadzidimitriou A, Agathangelidis A, et al. . Prognostic relevance of MYD88 mutations in CLL: the jury is still out. Blood. 2015;126(8):1043-1044. PubMed PMC
Baliakas P, Iskas M, Gardiner A, et al. . Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249-255. PubMed
Baliakas P, Mattsson M, Stamatopoulos K, Rosenquist R. Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Intern Med. 2016;279(4):347-357. PubMed
Baliakas P, Puiggros A, Xochelli A, et al. . Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference. Haematologica. 2016;101(7):e299-e302. PubMed PMC
Catovsky D, Wade R, Else M. The clinical significance of patients’ sex in chronic lymphocytic leukemia. Haematologica. 2014;99(6):1088-1094. PubMed PMC
Cortese D, Sutton LA, Cahill N, et al. . On the way towards a ‘CLL prognostic index’: focus on TP53, BIRC3, SF3B1, NOTCH1 and MYD88 in a population-based cohort. Leukemia. 2014;28(3):710-713. PubMed
Del Giudice I, Rossi D, Chiaretti S, et al. . NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica. 2012;97(3):437-441. PubMed PMC
Döhner H, Stilgenbauer S, Benner A, et al. . Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910-1916. PubMed
Eichhorst B, Hallek M. Prognostication of chronic lymphocytic leukemia in the era of new agents. Hematology Am Soc Hematol Educ Program. 2016;2016:149-155. PubMed PMC
Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848-1854. PubMed
Mansouri L, Cahill N, Gunnarsson R, et al. . NOTCH1 and SF3B1 mutations can be added to the hierarchical prognostic classification in chronic lymphocytic leukemia. Leukemia. 2013;27(2):512-514. PubMed
Parikh SA, Strati P, Tsang M, West CP, Shanafelt TD. Should IGHV status and FISH testing be performed in all CLL patients at diagnosis? A systematic review and meta-analysis. Blood. 2016;127(14):1752-1760. PubMed
Rai KR, Jain P. Chronic lymphocytic leukemia (CLL)—then and now. Am J Hematol. 2016;91(3):330-340. PubMed
Rossi D, Gerber B, Stüssi G. Predictive and prognostic biomarkers in the era of new targeted therapies for chronic lymphocytic leukemia. Leuk Lymphoma. 2017;58(7):1548-1560. PubMed
Wierda WG, O’Brien S, Wang X, et al. . Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109(11):4679-4685. PubMed
Damle RN, Wasil T, Fais F, et al. . Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840-1847. PubMed
International CLL-IPI working group An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): a meta-analysis of individual patient data. Lancet Oncol. 2016;17(6):779-790. PubMed
Baliakas P, Mattsson M, Hadzidimitriou A, et al. . No improvement in long-term survival over time for chronic lymphocytic leukemia patients in stereotyped subsets #1 and #2 treated with chemo(immuno)therapy. Haematologica. 2018;103(4):e158-e161. PubMed PMC
Baliakas P, Moysiadis T, Hadzidimitriou A, et al. . Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia [published online ahead of print 27 September 2018]. Haematologica. doi: 10.3324/haematol.2018.195032. PubMed PMC
Hallek M, Cheson BD, Catovsky D, et al. . iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131(25):2745-2760. PubMed
Puiggros A, Blanco G, Espinet B. Genetic abnormalities in chronic lymphocytic leukemia: where we are and where we go. BioMed Res Int. 2014;2014:435983. PubMed PMC
Dierlamm J, Michaux L, Criel A, Wlodarska I, Van den Berghe H, Hossfeld DK. Genetic abnormalities in chronic lymphocytic leukemia and their clinical and prognostic implications. Cancer Genet Cytogenet. 1997;94(1):27-35. PubMed
Juliusson G, Gahrton G. Chromosome aberrations in B-cell chronic lymphocytic leukemia. Pathogenetic and clinical implications. Cancer Genet Cytogenet. 1990;45(2):143-160. PubMed
Juliusson G, Oscier DG, Fitchett M, et al. . Prognostic subgroups in B-cell chronic lymphocytic leukemia defined by specific chromosomal abnormalities. N Engl J Med. 1990;323(11):720-724. PubMed
Haferlach C, Bacher U. Cytogenetic methods in chronic lymphocytic leukemia. Methods Mol Biol. 2011;730:119-130. PubMed
Gahrton G, Robèrt KH, Friberg K, Zech L, Bird AG. Nonrandom chromosomal aberrations in chronic lymphocytic leukemia revealed by polyclonal B-cell-mitogen stimulation. Blood. 1980;56(4):640-647. PubMed
Dubuc AM, Davids MS, Pulluqi M, et al. . FISHing in the dark: how the combination of FISH and conventional karyotyping improves the diagnostic yield in CpG-stimulated chronic lymphocytic leukemia. Am J Hematol. 2016;91(10):978-983. PubMed
Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21(12):2442-2451. PubMed
Haferlach C, Dicker F, Weiss T, et al. . Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters. Genes Chromosomes Cancer. 2010;49(9):851-859. PubMed
Puiggros A, Collado R, Calasanz MJ, et al. . Patients with chronic lymphocytic leukemia and complex karyotype show an adverse outcome even in absence of TP53/ATM FISH deletions. Oncotarget. 2017;8(33):54297-54303. PubMed PMC
Rigolin GM, Cibien F, Martinelli S, et al. . Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia with “normal” FISH: correlations with clinicobiologic parameters. Blood. 2012;119(10):2310-2313. PubMed
Nguyen-Khac F, Borie C, Callet-Bauchu E, Eclache V, Struski S. Cytogenetics in the management of chronic lymphocytic leukemia: an update by the Groupe francophone de cytogénétique hématologique (GFCH). Ann Biol Clin (Paris). 2016;74(5):561-567. PubMed
Blanco G, Puiggros A, Baliakas P, et al. . Karyotypic complexity rather than chromosome 8 abnormalities aggravates the outcome of chronic lymphocytic leukemia patients with TP53 aberrations. Oncotarget. 2016;7(49):80916-80924. PubMed PMC
Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80% of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 2006;108(9):3152-3160. PubMed
Jaglowski SM, Ruppert AS, Heerema NA, et al. . Complex karyotype predicts for inferior outcomes following reduced-intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol. 2012;159(1):82-87. PubMed PMC
Rigolin GM, Cavallari M, Quaglia FM, et al. . In CLL, comorbidities and the complex karyotype are associated with an inferior outcome independently of CLL-IPI. Blood. 2017;129(26):3495-3498. PubMed
Rigolin GM, Saccenti E, Guardalben E, et al. . In chronic lymphocytic leukaemia with complex karyotype, major structural abnormalities identify a subset of patients with inferior outcome and distinct biological characteristics. Br J Haematol. 2018;181(2):229-233. PubMed
Badoux XC, Keating MJ, Wang X, et al. . Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood. 2011;117(11):3016-3024. PubMed PMC
Herling CD, Klaumünzer M, Rocha CK, et al. . Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy. Blood. 2016;128(3):395-404. PubMed
Takahashi K, Hu B, Wang F, et al. . Clinical implications of cancer gene mutations in patients with chronic lymphocytic leukemia treated with lenalidomide. Blood. 2018;131(16):1820-1832. PubMed PMC
Le Bris Y, Struski S, Guièze R, et al. . Major prognostic value of complex karyotype in addition to TP53 and IGHV mutational status in first-line chronic lymphocytic leukemia. Hematol Oncol. 2017;35(4):664-670. PubMed
Mato AR, Hill BT, Lamanna N, et al. . Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol. 2017;28(5):1050-1056. PubMed
Mato AR, Thompson M, Allan JN, et al. . Real-world outcomes and management strategies for venetoclax-treated chronic lymphocytic leukemia patients in the United States. Haematologica. 2018;103(9):1511-1517. PubMed PMC
Roberts AW, Davids MS, Pagel JM, et al. . Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311-322. PubMed PMC
Thompson PA, O’Brien SM, Wierda WG, et al. . Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612-3621. PubMed PMC
Anderson MA, Tam C, Lew TE, et al. . Clinicopathological features and outcomes of progression of CLL on the BCL2 inhibitor venetoclax. Blood. 2017;129(25):3362-3370. PubMed
Swerdlow SH, Campo E, Pileri SA, et al. . The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375-2390. PubMed PMC
Muthusamy N, Breidenbach H, Andritsos L, et al. . Enhanced detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide in combination with pokeweed mitogen and phorbol myristate acetate. Cancer Genet. 2011;204(2):77-83. PubMed PMC
International Standing Committee on Human Cytogenetic Nomenclature ISCN: An International System for Human Cytogenomic Nomenclature. Basel, NY: Karger; 2016.
Peterson JF. The complexities of defining a complex karyotype in hematological malignancies: a need for standardization? Acta Haematol. 2017;138(1):65-66. PubMed
Slovak ML, Kopecky KJ, Cassileth PA, et al. . Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96(13):4075-4083. PubMed
Agathangelidis A, Darzentas N, Hadzidimitriou A, et al. . Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 2012;119(19):4467-4475. PubMed PMC
Malcikova J, Tausch E, Rossi D, et al. ; European Research Initiative on Chronic Lymphocytic Leukemia (ERIC)–TP53 network . ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia—update on methodological approaches and results interpretation. Leukemia. 2018;32(5):1070-1080. PubMed PMC
Put N, Konings P, Rack K, et al. ; Belgian Cytogenetic Group for Hemato-Oncology (BCGHO) . Improved detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide and interleukin-2 stimulation: a Belgian multicentric study. Genes Chromosomes Cancer. 2009;48(10):843-853. PubMed
Ibbotson R, Athanasiadou A, Sutton LA, et al. . Coexistence of trisomies of chromosomes 12 and 19 in chronic lymphocytic leukemia occurs exclusively in the rare IgG-positive variant. Leukemia. 2012;26(1):170-172. PubMed
Sellmann L, Gesk S, Walter C, et al. . Trisomy 19 is associated with trisomy 12 and mutated IGHV genes in B-chronic lymphocytic leukaemia. Br J Haematol. 2007;138(2):217-220. PubMed
Rossi D, Khiabanian H, Spina V, et al. . Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood. 2014;123(14):2139-2147. PubMed PMC
Nadeu F, Delgado J, Royo C, et al. . Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood. 2016;127(17):2122-2130. PubMed PMC
Arber DA, Orazi A, Hasserjian R, et al. . The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-2405. PubMed
Huang SJ, Bergin K, Smith AC, et al. . Clonal evolution as detected by interphase fluorescence in situ hybridization is associated with worse overall survival in a population-based analysis of patients with chronic lymphocytic leukemia in British Columbia, Canada. Cancer Genet. 2017;210:1-8. PubMed
Stilgenbauer S, Sander S, Bullinger L, et al. . Clonal evolution in chronic lymphocytic leukemia: acquisition of high-risk genomic aberrations associated with unmutated VH, resistance to therapy, and short survival. Haematologica. 2007;92(9):1242-1245. PubMed
Wawrzyniak E, Kotkowska A, Blonski JZ, et al. . Clonal evolution in CLL patients as detected by FISH versus chromosome banding analysis, and its clinical significance. Eur J Haematol. 2014;92(2):91-101. PubMed
Lazarian G, Tausch E, Eclache V, et al. . TP53 mutations are early events in chronic lymphocytic leukemia disease progression and precede evolution to complex karyotypes. Int J Cancer. 2016;139(8):1759-1763. PubMed
Gunnarsson R, Isaksson A, Mansouri M, et al. . Large but not small copy-number alterations correlate to high-risk genomic aberrations and survival in chronic lymphocytic leukemia: a high-resolution genomic screening of newly diagnosed patients. Leukemia. 2010;24(1):211-215. PubMed
Kay NE, Eckel-Passow JE, Braggio E, et al. . Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genet Cytogenet. 2010;203(2):161-168. PubMed PMC
Ouillette P, Collins R, Shakhan S, et al. . Acquired genomic copy number aberrations and survival in chronic lymphocytic leukemia. Blood. 2011;118(11):3051-3061. PubMed PMC
Puiggros A, Puigdecanet E, Salido M, et al. . Genomic arrays in chronic lymphocytic leukemia routine clinical practice: are we ready to substitute conventional cytogenetics and fluorescence in situ hybridization techniques? Leuk Lymphoma. 2013;54(5):986-995. PubMed
Schoumans J, Suela J, Hastings R, et al. . Guidelines for genomic array analysis in acquired haematological neoplastic disorders. Genes Chromosomes Cancer. 2016;55(5):480-491. PubMed
Klintman J, Barmpouti K, Knight SJL, et al. . Clinical-grade validation of whole genome sequencing reveals robust detection of low-frequency variants and copy number alterations in CLL. Br J Haematol. 2018;182(3):412-417. PubMed
Puente XS, Pinyol M, Quesada V, et al. . Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475(7354):101-105. PubMed PMC
Puente XS, Beà S, Valdés-Mas R, et al. . Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526(7574):519-524. PubMed
Opinion: What defines high-risk CLL in the post-chemoimmunotherapy era?
The EHA Research Roadmap: Malignant Lymphoid Diseases
Cytogenetics in Chronic Lymphocytic Leukemia: ERIC Perspectives and Recommendations
Evolution of TP53 abnormalities during CLL disease course is associated with telomere length changes
Chromothripsis in Chronic Lymphocytic Leukemia: A Driving Force of Genome Instability