Duplication of 8q24 in Chronic Lymphocytic Leukemia: Cytogenetic and Molecular Biologic Analysis of MYC Aberrations

. 2022 ; 12 () : 859618. [epub] 20220624

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35814434

Chronic lymphocytic leukemia (CLL) with cytogenetics findings, such as complex karyotype and deletions of TP53 or ATM, is associated with adverse clinical outcomes. Additional chromosomal abnormalities further stratify patients into groups with diverse prognoses. Gain of 8q24 is one of the abnormalities considered as prognostically unfavorable. In our study, we performed a FISH analysis in an initial cohort of 303 consecutive CLL patients and determined the frequency of +8q to be 6.3 %. Our analysis confirmed the association with TP53/ATM aberrations and CK, as the frequency of +8q reached 26.7 % in an extended delTP53/ATM+CK cohort. M-FISH analysis enabled the identification of partner chromosomes where the segment of the duplicated 8q arm was localized. More detailed mapping of the gained 8q region using the M-BAND method determined the smallest amplified region 8q23-8qter. We observed significantly shorter overall survival (OS; 9.0 years in +8q-positive vs. 10.6 years in +8q-negative; p=0.02) and detected slightly higher MYC mRNA/protein levels in +8q-positive vs. +8q-negative patients.

Zobrazit více v PubMed

Dreger P, Ghia P, Schetelig J, van Gelder M, Kimby E, Michallet M, et al. . High-Risk Chronic Lymphocytic Leukemia in the Era of Pathway Inhibitors: Integrating Molecular and Cellular Therapies. Blood (2018) 132(9):892–902. doi: 10.1182/blood-2018-01-826008 PubMed DOI

Parikh SA. Chronic Lymphocytic Leukemia Treatment Algorithm 2018. Blood Cancer J (2018) 8(10):93. doi: 10.1038/s41408-018-0131-2 PubMed DOI PMC

Baliakas P, Jeromin S, Iskas M, Puiggros A, Plevova K, Nguyen-Khac F, et al. . Cytogenetic Complexity in Chronic Lymphocytic Leukemia: Definitions, Associations, and Clinical Impact. Blood (2019) 133(11):1205–16. doi: 10.1182/blood-2018-09-873083 PubMed DOI PMC

Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) Genes are Associated With a More Aggressive Form of Chronic Lymphocytic Leukemia. Blood (1999) 94(6):1848–54. doi: 10.1182/blood.V94.6.1848.418k05_1848_1854 PubMed DOI

Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE, et al. . Multivariate Analysis of Prognostic Factors in CLL: Clinical Stage, IGVH Gene Mutational Status, and Loss or Mutation of the P53 Gene are Independent Prognostic Factors. Blood (2002) 100(4):1177–84. doi: 10.1182/blood.V100.4.1177.h81602001177_1177_1184 PubMed DOI

Hallek M, Al-Sawaf O. Chronic Lymphocytic Leukemia: 2022 Update on Diagnostic and Therapeutic Procedures. Am J Hematol (2021) 96(12):1679–705. doi: 10.1002/ajh.26367 PubMed DOI

Leeksma AC, Baliakas P, Moysiadis T, Puiggros A, Plevova K, van der Kevie-Kersemaekers AM, et al. . Genomic Arrays Identify High-Risk Chronic Lymphocytic Leukemia With Genomic Complexity: A Multi-Center Study. Haematologica (2020) 106(1):87–97. doi: 10.3324/haematol.2019.239947 PubMed DOI PMC

Edelmann J, Holzmann K, Miller F, Winkler D, Bühler A, Zenz T, et al. . High-Resolution Genomic Profiling of Chronic Lymphocytic Leukemia Reveals New Recurrent Genomic Alterations. Blood (2012) 120(24):4783–94. doi: 10.1182/blood-2012-04-423517 PubMed DOI

Rinaldi A, Mian M, Kwee I, Rossi D, Deambrogi C, Mensah AA, et al. . Genome-Wide DNA Profiling Better Defines the Prognosis of Chronic Lymphocytic Leukaemia. Br J Haematol (2011) 154(5):590–9. doi: 10.1111/j.1365-2141.2011.08789.x PubMed DOI

Edelmann J, Holzmann K, Tausch E, Saunderson EA, Jebaraj BMC, Steinbrecher D, et al. . Genomic Alterations in High-Risk Chronic Lymphocytic Leukemia Frequently Affect Cell Cycle Key Regulators and NOTCH1-Regulated Transcription. Haematologica (2020) 105(5):1379–90. doi: 10.3324/haematol.2019.217307 PubMed DOI PMC

Blanco G, Puiggros A, Baliakas P, Athanasiadou A, García-Malo M, Collado R, et al. . Karyotypic Complexity Rather Than Chromosome 8 Abnormalities Aggravates the Outcome of Chronic Lymphocytic Leukemia Patients With TP53 Aberrations. Oncotarget (2016) 7(49):80916–24. doi: 10.18632/oncotarget.13106 PubMed DOI PMC

Kruzova L, Schneiderova P, Holzerova M, Vatolikova M, Divoka M, Turcsanyi P, et al. . Complex Karyotype as a Predictor of High-Risk Chronic Lymphocytic Leukemia: A Single Center Experience Over 12 Years. Leuk Res (2019) 85:106218. doi: 10.1016/j.leukres.2019.106218 PubMed DOI

Forconi F, Rinaldi A, Kwee I, Sozzi E, Raspadori D, Rancoita PM, et al. . Genome-Wide DNA Analysis Identifies Recurrent Imbalances Predicting Outcome in Chronic Lymphocytic Leukaemia With 17p Deletion. Br J Haematol (2008) 143(4):532–6. doi: 10.1111/j.1365-2141.2008.07373.x PubMed DOI

Houldsworth J, Guttapalli A, Thodima V, Yan XJ, Mendiratta G, Zielonka T, et al. . Genomic Imbalance Defines Three Prognostic Groups for Risk Stratification of Patients With Chronic Lymphocytic Leukemia. Leuk Lymphoma (2014) 55(4):920–8. doi: 10.3109/10428194.2013.845882 PubMed DOI PMC

Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C. Immunostimulatory Oligonucleotide-Induced Metaphase Cytogenetics Detect Chromosomal Aberrations in 80% of CLL Patients: A Study of 132 CLL Cases With Correlation to FISH, IgVH Status, and CD38 Expression. Blood (2006) 108(9):3152–60. doi: 10.1182/blood-2006-02-005322 PubMed DOI

McGowan-Jordan J, Hastings RJ, Moore S. An International System for Human Cytogenomic Nomenclature. McGowan-Jordan J, Hastings RJ, Moore S, editors. Basel, Switzerland: Karger; (2020).

Jaskova Z, Pavlova S, Malcikova J, Brychtova Y, Trbusek M. PRIMA-1. Leuk Res (2020) 89:106288. doi: 10.1016/j.leukres.2019.106288 PubMed DOI

Koczkodaj D, Popek-Marciniec S, Zmorzyński S, Wąsik-Szczepanek E, Filip AA. Examination of Clonal Evolution in Chronic Lymphocytic Leukemia. Med Oncol (2019) 36(9):79. doi: 10.1007/s12032-019-1300-2 PubMed DOI

Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. . Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia. N Engl J Med (2000) 343(26):1910–6. doi: 10.1056/NEJM200012283432602 PubMed DOI

Oscier DG, Gardiner AC. Lymphoid Neoplasms. Best Pract Res Clin Haematol (2001) 14(3):609–30. doi: 10.1053/beha.2001.0157 PubMed DOI

Baliakas P, Espinet B, Mellink C, Jarosova M, Athanasiadou A, Ghia P, et al. . Cytogenetics in Chronic Lymphocytic Leukemia: ERIC Perspectives and Recommendations. Hemasphere (2022) 6(4):e707. doi: 10.1097/HS9.0000000000000707 PubMed DOI PMC

Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. . Mutations Driving CLL and Their Evolution in Progression and Relapse. Nature (2015) 526(7574):525–30. doi: 10.1038/nature15395 PubMed DOI PMC

Nguyen-Khac F. "Double-Hit" Chronic Lymphocytic Leukemia, Involving the. Front Oncol (2021) 11:826245. doi: 10.3389/fonc.2021.826245 PubMed DOI PMC

McMahon SB. MYC and the Control of Apoptosis. Cold Spring Harb Perspect Med (2014) 4(7):a014407. doi: 10.1101/cshperspect.a014407 PubMed DOI PMC

Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, et al. . MYC Deregulation in Primary Human Cancers. Genes (Basel) (2017) 8(6):151–81. doi: 10.3390/genes8060151 PubMed DOI PMC

Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. . COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res (2019) 47(D1):D941–D7. doi: 10.1093/nar/gky1015 PubMed DOI PMC

Sewastianik T, Prochorec-Sobieszek M, Chapuy B, Juszczyński P. MYC Deregulation in Lymphoid Tumors: Molecular Mechanisms, Clinical Consequences and Therapeutic Implications. Biochim Biophys Acta (2014) 1846(2):457–67. doi: 10.1016/j.bbcan.2014.08.006 PubMed DOI

Zhang W, Kater AP, Widhopf GF, Chuang HY, Enzler T, James DF, et al. . B-Cell Activating Factor and V-Myc Myelocytomatosis Viral Oncogene Homolog (C-Myc) Influence Progression of Chronic Lymphocytic Leukemia. Proc Natl Acad Sci U S A (2010) 107(44):18956–60. doi: 10.1073/pnas.1013420107 PubMed DOI PMC

Bisso A, Sabò A, Amati B. MYC in Germinal Center-Derived Lymphomas: Mechanisms and Therapeutic Opportunities. Immunol Rev (2019) 288(1):178–97. doi: 10.1111/imr.12734 PubMed DOI

Herishanu Y, Pérez-Galán P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. . The Lymph Node Microenvironment Promotes B-Cell Receptor Signaling, NF-kappaB Activation, and Tumor Proliferation in Chronic Lymphocytic Leukemia. Blood (2011) 117(2):563–74. doi: 10.1182/blood-2010-05-284984 PubMed DOI PMC

Farrell AS, Sears RC. MYC Degradation. Cold Spring Harb Perspect Med (2014) 4(3):a014365. doi: 10.1101/cshperspect.a014365 PubMed DOI PMC

Fonseka LN, Tirado CA. C-MYC Involvement in Chronic Lymphocytic Leukemia (CLL): A Molecular and Cytogenetic Update. J Assoc Genet Technol (2015) 41(4):176–83. PubMed

Wang Y, Tschautscher MA, Rabe KG, Call TG, Leis JF, Kenderian SS, et al. . Clinical Characteristics and Outcomes of Richter Transformation: Experience of 204 Patients From a Single Center. Haematologica (2020) 105(3):765–73. doi: 10.3324/haematol.2019.224121 PubMed DOI PMC

Rossi D, Spina V, Deambrogi C, Rasi S, Laurenti L, Stamatopoulos K, et al. . The Genetics of Richter Syndrome Reveals Disease Heterogeneity and Predicts Survival After Transformation. Blood (2011) 117(12):3391–401. doi: 10.1182/blood-2010-09-302174 PubMed DOI

Scandurra M, Rossi D, Deambrogi C, Rancoita PM, Chigrinova E, Mian M, et al. . Genomic Profiling of Richter's Syndrome: Recurrent Lesions and Differences With De Novo Diffuse Large B-Cell Lymphomas. Hematol Oncol (2010) 28(2):62–7. doi: 10.1002/hon.932 PubMed DOI

Woroniecka R, Rymkiewicz G, Grygalewicz B, Błachnio K, Rygier J, Jarmuż-Szymczak M, et al. . Cytogenetic and Flow Cytometry Evaluation of Richter Syndrome Reveals MYC, CDKN2A, IGH Alterations With Loss of CD52, CD62L and Increase of CD71 Antigen Expression as the Most Frequent Recurrent Abnormalities. Am J Clin Pathol (2015) 143(1):25–35. doi: 10.1309/AJCPATRQWANW2O3N PubMed DOI

Filip D, Mraz M. The Role of MYC in the Transformation and Aggressiveness of 'Indolent' B-Cell Malignancies. Leuk Lymphoma (2020) 61(3):510–24. doi: 10.1080/10428194.2019.1675877 PubMed DOI

Lee J, Zhang LL, Wu W, Guo H, Li Y, Sukhanova M, et al. . Activation of MYC, a Bona Fide Client of HSP90, Contributes to Intrinsic Ibrutinib Resistance in Mantle Cell Lymphoma. Blood Adv (2018) 2(16):2039–51. doi: 10.1182/bloodadvances.2018016048 PubMed DOI PMC

Chapiro E, Lesty C, Gabillaud C, Durot E, Bouzy S, Armand M, et al. . "Double-Hit" Chronic Lymphocytic Leukemia: An Aggressive Subgroup With 17p Deletion and 8q24 Gain. Am J Hematol (2018) 93(3):375–82. doi: 10.1002/ajh.24990 PubMed DOI

Kuzyk A, Mai S. C-MYC-Induced Genomic Instability. Cold Spring Harb Perspect Med (2014) 4(4):a014373. doi: 10.1101/cshperspect.a014373 PubMed DOI PMC

Oster SK, Ho CS, Soucie EL, Penn LZ. The Myc Oncogene: MarvelouslY Complex. Adv Cancer Res (2002) 84:81–154. doi: 10.1016/S0065-230X(02)84004-0 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...