Patient specific real-time PCR in precision medicine - Validation of IG/TR based MRD assessment in lymphoid leukemia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36727082
PubMed Central
PMC9885152
DOI
10.3389/fonc.2022.1111209
Knihovny.cz E-zdroje
- Klíčová slova
- EuroMRD, IG rearrangement, IVDR, MRD, RQ-PCR, TR rearrangement, method validation, personalized diagnostics,
- Publikační typ
- časopisecké články MeSH
Detection of patient- and tumor-specific clonally rearranged immune receptor genes using real-time quantitative (RQ)-PCR is an accepted method in the field of precision medicine for hematologic malignancies. As individual primers are needed for each patient and leukemic clone, establishing performance specifications for the method faces unique challenges. Results for series of diagnostic assays for CLL and ALL patients demonstrate that the analytic performance of the method is not dependent on patients' disease characteristics. The calibration range is linear between 10-1 and 10-5 for 90% of all assays. The detection limit of the current standardized approach is between 1.8 and 4.8 cells among 100,000 leukocytes. RQ-PCR has about 90% overall agreement to flow cytometry and next generation sequencing as orthogonal methods. Accuracy and precision across different labs, and above and below the clinically applied cutoffs for minimal/measurable residual disease (MRD) demonstrate the robustness of the technique. The here reported comprehensive, IVD-guided analytical validation provides evidence that the personalized diagnostic methodology generates robust, reproducible and specific MRD data when standardized protocols for data generation and evaluation are used. Our approach may also serve as a guiding example of how to accomplish analytical validation of personalized in-house diagnostics under the European IVD Regulation.
Department of Medicine 3 Hematology Oncology and Palliative Care University Hospital Rostock Germany
Oncology Biomarker Development Genentech Inc South San Francisco CA United States
Zobrazit více v PubMed
Van Dongen JJM, Seriu T, Panzer-Grümayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. . Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet (1998) 352(9142):1731–8. doi: 10.1016/S0140-6736(98)04058-6 PubMed DOI
Borowitz MJ, Wood BL, Devidas M, Loh ML, Raetz EA, Salzer WL, et al. . Prognostic significance of minimal residual disease in high risk b-ALL: A report from children’s oncology group study AALL0232. Blood. (2015) 126(8):964–71. doi: 10.1182/blood-2015-03-633685 PubMed DOI PMC
Böttcher S, Ritgen M, Fischer K, Stilgenbauer S, Busch RM, Fingerle-Rowson G, et al. . Minimal residual disease quantification is an independent predictor of progression-free and overall survival in chronic lymphocytic leukemia: A multivariate analysis from the randomized GCLLSG CLL8 trial. J Clin Oncol (2012) 30(9):980–8. doi: 10.1200/JCO.2011.36.9348 PubMed DOI
Langerak AW, Ritgen M, Goede V, Robrecht S, Bahlo J, Fischer K, et al. . Prognostic value of MRD in CLL patients with comorbidities receiving chlorambucil plus obinutuzumab or rituximab. Blood. (2019) 133(5):494–7. doi: 10.1182/blood-2018-03-839688 PubMed DOI PMC
Hallek M, Al-Sawaf O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am J Hematol (2021) 96(12):1679–705. doi: 10.1002/ajh.26367 PubMed DOI
Hoelzer D, Bassan R, Dombret H, Fielding A, Ribera JM, Buske C, et al. . Acute lymphoblastic leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol (2016) 27(April):v69–82. doi: 10.1093/annonc/mdw025 PubMed DOI
De Haas V, Ismaila N, Advani A, Arber DA, Dabney RS, Patel-Donelly D, et al. . Initial diagnostic work-up of acute leukemia: ASCO clinical practice guideline endorsement of the college of American pathologists and American society of hematology guideline. J Clin Oncol (2019) 37(3):239–53. doi: 10.1200/JCO.18.01468 PubMed DOI PMC
Heuser M, Freeman SD, Ossenkoppele GJ, Buccisano F, Hourigan CS, Ngai LL, et al. . 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD working party. Blood (2021) 138(26):2753–67. doi: 10.1182/blood.2021013626 PubMed DOI PMC
Pongers-Willemse M, Verhagen O, Tibbe G, Wijkhuijs A, de Haas V, Roovers E, et al. . Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia. (1998) 12:2006–14. doi: 10.1038/sj.leu.2401246 PubMed DOI
van der Velden VHJ, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJM. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: Principles, approaches, and laboratory aspects. Leukemia. (2003) 17(6):1013–34. doi: 10.1038/sj.leu.2402922 PubMed DOI
van der Velden VHJ, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, et al. . Analysis of minimal residual disease by Ig/TCR gene rearrangements: Guidelines for interpretation of real-time quantitative PCR data. Leukemia. (2007) 21(4):604–11. doi: 10.1038/sj.leu.2404586 PubMed DOI
Van Dongen JJM, van der Velden VHJ, Brüggemann M, Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood. (2015) 125(26):3996–4009. doi: 10.1182/blood-2015-03-580027 PubMed DOI PMC
van der Velden VHJ, Panzer-Grümayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A, et al. . Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia. (2007) 21(4):706–13. doi: 10.1038/sj.leu.2404535 PubMed DOI
Burd EM. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev (2010) 23(3):550–76. doi: 10.1128/CMR.00074-09 PubMed DOI PMC
Mattocks CJ, Morris MA, Matthijs G, Swinnen E, Corveleyn A, Dequeker E, et al. . A standardized framework for the validation and verification of clinical molecular genetic tests. Eur J Hum Genet (2010) 18(12):1276–88. doi: 10.1038/ejhg.2010.101 PubMed DOI PMC
Raymaekers M, Smets R, Maes B, Cartuyvels R. Checklist for optimization and validation of real-time PCR assays. J Clin Lab Anal (2009) 23(3):145–51. doi: 10.1002/jcla.20307 PubMed DOI PMC
Linnet K. Necessary sample size for method comparison studies based on regression analysis. Clin Chem (1999) 45(6 I):882–94. doi: 10.1093/clinchem/45.6.882 PubMed DOI
EMEA Committee for Medicinal Products in Human Use . Guideline on bioanalytical method validation. EMEA/CHMP/EWP/192217/2009 rev. 1 corr. 2. London: Euorpean Medicines Agency; (2011) p. 1–23.
Booth BP, Simon WC. Analytical method validation. New Drug Dev Regul Paradig Clin Pharmacol Biopharm. (2016), 138–59.
European Commission . IVDR - regulation (EU) 2017/746 on in-vitro diagnostic medical devices. Off J Eur Union. (2017) 60(April 2014):1–175.
Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. . Proposals for the immunological classification of acute leukemias. In: European Group for the immunological characterization of leukemias (EGIL), vol. Vol. 9. . England: Leukemia; (1995). p. 1783–6. PubMed
Van Der Velden VHJ, Van Dongen JJM. MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol (2009) 538:115–50. doi: 10.1007/978-1-59745-418-6_7 PubMed DOI
Flohr T, Schrauder A, Cazzaniga G, Panzer-Grümayer R, van der Velden V, Fischer S, et al. . Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia. (2008) 22(4):771–82. doi: 10.1038/leu.2008.5 PubMed DOI
Cazzaniga G, Songia S, Biondi A. Pcr technology to identify minimal residual disease. Methods Mol Biol (2021) 2185:77–94. doi: 10.1007/978-1-0716-0810-4_6 PubMed DOI
CLSI . Evaluation of stability of in vitro diagnostic reagents; approved guideline. CLSI document EP25-a. clinical and laboratory standards institute. Wayne, PA, USA: Clinical and Laboratory Standards Institute; (2009).
CLSI . User protocol for evaluation of qualitative test performance; approved guideline–second edition. CLSI document EP12-A2. CLSI/NCCLS document EP12-A2, approved guideline. 2nd Edition. Wayne, PA, USA: Clinical and Laboratory Standards Institute; (2008).
CLSI . Evaluation of precision of quantitative measurement procedures; approved guideline–third edition. CLSI document EP05-A3. Wayne, PA, USA: Clinical and Laboratory Standards Institute; (2014).
NCCLS . Evaluation of the linearity of quantitative measurement procedures: A statistical approach, approved guideline. NCCLS document EP6-a. Wayne, PA, USA: National Committee for Clinical Laboratory Standards; (2003).
NCCLS . Protocols for determination of limits of detection and limits of quantitation; approved guideline. NCCLS document EP17-a. Wayne, PA, USA: National Committee for Clinical Laboratory Standards; (2004).
R Core Team . R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; (2021). Available at: https://www.r-project.org/.
RStudio Team . RStudio: Integrated development for r. Boston, MA: RStudio, PBC; (2020). Available at: http://www.rstudio.com/.
van der Velden VHJ, Wijkhuijs JM, van Dongen JJM. Non-specific amplification of patient-specific Ig/TCR gene rearrangements depends on the time point during therapy: Implications for minimal residual disease monitoring. Leukemia. (2008) 22(3):641–4. doi: 10.1038/sj.leu.2404925 PubMed DOI
Stamatopoulos K, Belessi C, Moreno C, Boudjograh M, Guida G, Smilevska T, et al. . Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood. (2007) 109(1):259–70. doi: 10.1182/blood-2006-03-012948 PubMed DOI
Bruggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG, et al. . Standardized MRD quantification in European all trials: Proceedings of the second international symposium on MRD assessment in Kiel, Germany, 18-20 September 2008. Leukemia. (2010) 24(3):521–35. doi: 10.1038/leu.2009.268 PubMed DOI
Svaton M, Skotnicova A, Reznickova L, Rennerova A, Valova T, Kotrova M, et al. . NGS-based MRD quantitation: An alternative to qPCR validated on a Large consecutive cohort of children with ALL. Blood. (2021) 138(Supplement 1):1314–4. doi: 10.1182/blood-2021-152971 DOI
Böttcher S, Stilgenbauer S, Busch R, Brüggemann M, Raff T, Pott C, et al. . Standardized MRD flow and ASO IGH RQ-PCR for MRD quantification in CLL patients after rituximab-containing immunochemotherapy: A comparative analysis. Leukemia. (2009) 23(11):2007–17. doi: 10.1038/leu.2009.140 PubMed DOI
Guilhot J, Preudhomme C, Mahon FX, Guilhot F. Analyzing molecular response in chronic myeloid leukemia clinical trials: Pitfalls and golden rules. Cancer. (2015) 121(4):490–7. doi: 10.1002/cncr.29053 PubMed DOI
Thompson M, Wood R. Harmonized guidelines for internal quality control in analytical chemistry laboratories. Pure Appl Chem (1995) 67(4):649–66. doi: 10.1351/pac199567040649 DOI
Kotrova M, Muzikova K, Mejstrikova E, Novakova M, Bakardjieva-Mihaylova V, Fiser K, et al. . The predictive strength of next-generation sequencing MRD detection for relapse compared with current methods in childhood ALL. Blood. (2015) 126:1045–7. doi: 10.1182/blood-2015-07-655159 PubMed DOI PMC
Kotrová M, Koopmann J, Trautmann H, Alakel N, Beck J, Nachtkamp K, et al. . Prognostic value of low-level MRD in adult acute lymphoblastic leukemia detected by low- and high-throughput methods. Blood Adv (2022) 6(10):3006–10. doi: 10.1182/bloodadvances.2021006727 PubMed DOI PMC
Thompson PA, Srivastava J, Peterson C, Strati P, Jorgensen JL, Hether T, et al. . Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood. (2019) 134(22):1951–9. doi: 10.1182/blood.2019001077 PubMed DOI PMC
Hengeveld PJ, van der Klift MY, Kolijn PM, Davi F, Kavelaars FG, de Jonge E, et al. . Detecting measurable residual disease beyond 10-4 through an IGHV leader-based NGS approach improves prognostic stratification in CLL. Blood. (2022) blood.2022017411. doi: 10.1182/blood.2022017411 PubMed DOI
Raff T, Gökbuget N, Lüschen S, Reutzel R, Ritgen M, Irmer S, et al. . Molecular relapse in adult standard-risk ALL patients detected by prospective MRD monitoring during and after maintenance treatment: Data from the GMALL 06/99 and 07/03 trials. Blood. (2007) 109(3):910–5. doi: 10.1182/blood-2006-07-037093 PubMed DOI
Fronkova E, Muzikova K, Mejstrikova E, Kovac M, Formankova R, Sedlacek P, et al. . B-cell reconstitution after allogeneic SCT impairs minimal residual disease monitoring in children with ALL. Bone Marrow Transplant. (2008) 42(3):187–96. doi: 10.1038/bmt.2008.122 PubMed DOI
Uhrmacher S, Erdfelder F, Kreuzer KA. Flow cytometry and polymerase chain reaction-based analyses of minimal residual disease in chronic lymphocytic leukemia. Adv Hematol (2010) 2010:272517. doi: 10.1155/2010/272517 PubMed DOI PMC
Thompson PA, Wierda WG. Eliminating minimal residual disease as a therapeutic end point: Working toward cure for patients with CLL. Blood. (2016) 127(3):279–86. doi: 10.1182/blood-2015-08-634816 PubMed DOI PMC
Böttcher S, Hallek M, Ritgen M, Kneba M. The role of minimal residual disease measurements in the therapy for CLL: is it ready for prime time? Hematol Oncol Clin North Am (2013) 27(2):267–88. doi: 10.1016/j.hoc.2013.01.005 PubMed DOI
European Medicines Agency . Appendix 4 to the guideline on the evaluation of anticancer medicinal products in man. London, UK: European Medicines Agency; (2015).
Wendtner CM. CLL: Deep dive for residual cells by NGS matters. Blood. (2019) 134(22):1883–4. doi: 10.1182/blood.2019003244 PubMed DOI
Medina A, Puig N, Flores-Montero J, Jimenez C, Sarasquete ME, Garcia-Alvarez M, et al. . Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma. Blood Cancer J (2020) 10(10):108. doi: 10.1038/s41408-020-00377-0 PubMed DOI PMC
Alonso CM, Llop M, Sargas C, Pedrola L, Panadero J, Hervás D, et al. . Clinical utility of a next-generation sequencing panel for acute myeloid leukemia diagnostics. J Mol Diagnostics (2019) 21(2):228–40. doi: 10.1016/j.jmoldx.2018.09.009 PubMed DOI
Galimberti S, Genuardi E, Mazziotta F, Iovino L, Morabito F, Grassi S, et al. . The minimal residual disease in non-hodgkin’s lymphomas: From the laboratory to the clinical practice. Front Oncol (2019) 9:1–15. doi: 10.3389/fonc.2019.00528 PubMed DOI PMC
Aziz N, Zhao Q, Bry L, Driscoll DK, Funke B, Gibson JS, et al. . College of American pathologists’ laboratory standards for next-generation sequencing clinical tests. Arch Pathol Lab Med (2015) 139(4):481–93. doi: 10.5858/arpa.2014-0250-CP PubMed DOI