Recurrent mutations refine prognosis in chronic lymphocytic leukemia

. 2015 Feb ; 29 (2) : 329-36. [epub] 20140619

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24943832

Grantová podpora
11052 Blood Cancer UK - United Kingdom
12036 Blood Cancer UK - United Kingdom

Through the European Research Initiative on chronic lymphocytic leukemia (CLL) (ERIC), we screened 3490 patients with CLL for mutations within the NOTCH1 (n=3334), SF3B1 (n=2322), TP53 (n=2309), MYD88 (n=1080) and BIRC3 (n=919) genes, mainly at diagnosis (75%) and before treatment (>90%). BIRC3 mutations (2.5%) were associated with unmutated IGHV genes (U-CLL), del(11q) and trisomy 12, whereas MYD88 mutations (2.2%) were exclusively found among M-CLL. NOTCH1, SF3B1 and TP53 exhibited variable frequencies and were mostly enriched within clinically aggressive cases. Interestingly, as the timespan between diagnosis and mutational screening increased, so too did the incidence of SF3B1 mutations; no such increase was observed for NOTCH1 mutations. Regarding the clinical impact, NOTCH1 mutations, SF3B1 mutations and TP53 aberrations (deletion/mutation, TP53ab) correlated with shorter time-to-first-treatment (P<0.0001) in 889 treatment-naive Binet stage A cases. In multivariate analysis (n=774), SF3B1 mutations and TP53ab along with del(11q) and U-CLL, but not NOTCH1 mutations, retained independent significance. Importantly, TP53ab and SF3B1 mutations had an adverse impact even in U-CLL. In conclusion, we support the clinical relevance of novel recurrent mutations in CLL, highlighting the adverse impact of SF3B1 and TP53 mutations, even independent of IGHV mutational status, thus underscoring the need for urgent standardization/harmonization of the detection methods.

] Science for Life Laboratory Department of Immunology Genetics and Pathology Rudbeck Laboratory Uppsala University Uppsala Sweden [2] Hematology Department and HCT Unit G Papanicolaou Hospital Thessaloniki Greece

] Science for Life Laboratory Department of Immunology Genetics and Pathology Rudbeck Laboratory Uppsala University Uppsala Sweden [2] Hematology Department and HCT Unit G Papanicolaou Hospital Thessaloniki Greece [3] Institute of Applied Biosciences CERTH Thessaloniki Greece

] Science for Life Laboratory Department of Immunology Genetics and Pathology Rudbeck Laboratory Uppsala University Uppsala Sweden [2] Institute of Applied Biosciences CERTH Thessaloniki Greece

] Università Vita Salute San Raffaele Milan Italy [2] Division of Molecular Oncology and Department of Onco Hematology San Raffaele Scientific Institute Milan Italy

Cancer Sciences Faculty of Medicine University of Southampton Southampton UK

Central European Institute of Technology Masaryk University and University Hospital Brno Brno Czech Republic

Department of Haematology Royal Bournemouth Hospital Bournemouth UK

Department of Internal Medicine 3 Ulm University Ulm Germany

Department of Medicine Solna Clinical Epidemiology Unit Karolinska Institutet Stockholm Sweden

Division of Haematology Department of Translational Medicine Amedeo Avogadro University of Eastern Piedmont Novara Italy

Hematology Department and HCT Unit G Papanicolaou Hospital Thessaloniki Greece

Hematology Department Nikea General Hospital Pireaus Greece

Hematopathology Unit and Department of Hematology Hospital Clinic University of Barcelona Institut d'Investigacions Biomèdiques August Pi iSunyer Barcelona Spain

Institute of Applied Biosciences CERTH Thessaloniki Greece

Lund University and Hospital Department of Hematology Lund Stem Cell Center Lund Sweden

Science for Life Laboratory Department of Immunology Genetics and Pathology Rudbeck Laboratory Uppsala University Uppsala Sweden

Zobrazit více v PubMed

Blood. 2013 Aug 15;122(7):1266-70 PubMed

Blood. 2014 May 22;123(21):3247-54 PubMed

N Engl J Med. 2011 Dec 29;365(26):2497-506 PubMed

N Engl J Med. 2000 Dec 28;343(26):1910-6 PubMed

Haematologica. 2012 Mar;97(3):437-41 PubMed

Leukemia. 2013 Apr;27(5):1214-7 PubMed

Blood. 2012 Mar 22;119(12):2854-62 PubMed

Leukemia. 2013 Feb;27(2):512-4 PubMed

Nat Med. 2014 Jan;20(1):87-92 PubMed

Leukemia. 2010 Jan;24(1):211-5 PubMed

Blood. 2013 Mar 14;121(11):2051-8 PubMed

Haematologica. 2014 Apr;99(4):736-42 PubMed

J Exp Med. 2011 Jul 4;208(7):1389-401 PubMed

Leukemia. 2014 Mar;28(3):710-3 PubMed

Leukemia. 2014 Jan;28(1):108-17 PubMed

Blood. 2012 May 10;119(19):4467-75 PubMed

Blood. 2002 Aug 15;100(4):1177-84 PubMed

Blood. 2012 Jan 12;119(2):329-31 PubMed

Leukemia. 2012 May;26(5):1108-10 PubMed

Leukemia. 2014 Jun;28(6):1355-7 PubMed

Blood. 2008 Jun 15;111(12):5446-56 PubMed

Blood. 2002 Aug 15;100(4):1410-6 PubMed

Leukemia. 2013 Dec;27(12):2393-6 PubMed

J Clin Oncol. 2011 Jul 1;29(19):2703-8 PubMed

Leukemia. 2013 Apr;27(5):1100-6 PubMed

Genes Chromosomes Cancer. 2012 Sep;51(9):881-9 PubMed

Blood. 2013 Jan 17;121(3):468-75 PubMed

Nature. 2011 Jun 05;475(7354):101-5 PubMed

Nat Genet. 2011 Dec 11;44(1):47-52 PubMed

Blood. 2012 Nov 15;120(20):4191-6 PubMed

Blood. 2011 Dec 22;118(26):6904-8 PubMed

Blood. 2013 Feb 21;121(8):1403-12 PubMed

Blood. 2008 Feb 1;111(3):1524-33 PubMed

Cell. 2013 Feb 14;152(4):714-26 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The non-canonical BAF chromatin remodeling complex is a novel target of spliceosome dysregulation in SF3B1-mutated chronic lymphocytic leukemia

. 2024 Nov ; 38 (11) : 2429-2442. [epub] 20240911

Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities

. 2024 Jul ; 8 (7) : e113. [epub] 20240721

Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY

. 2023 Feb ; 37 (2) : 339-347. [epub] 20221224

Comparative analysis of targeted next-generation sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study

. 2021 Mar 01 ; 106 (3) : 682-691. [epub] 20210301

Prognostic and predictive role of gene mutations in chronic lymphocytic leukemia: results from the pivotal phase III study COMPLEMENT1

. 2020 Oct 01 ; 105 (10) : 2440-2447. [epub] 20201001

International prognostic score for asymptomatic early-stage chronic lymphocytic leukemia

. 2020 May 21 ; 135 (21) : 1859-1869.

Performance of anti-CD19 chimeric antigen receptor T cells in genetically defined classes of chronic lymphocytic leukemia

. 2020 Mar ; 8 (1) : .

Tailored approaches grounded on immunogenetic features for refined prognostication in chronic lymphocytic leukemia

. 2019 Feb ; 104 (2) : 360-369. [epub] 20180927

TP53 aberrations in chronic lymphocytic leukemia: an overview of the clinical implications of improved diagnostics

. 2018 Dec ; 103 (12) : 1956-1968. [epub] 20181115

Expression of COBLL1 encoding novel ROR1 binding partner is robust predictor of survival in chronic lymphocytic leukemia

. 2018 Feb ; 103 (2) : 313-324. [epub] 20171109

Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons

. 2017 Sep 19 ; 8 (41) : 71234-71248. [epub] 20170724

EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia

. 2017 Jul ; 31 (7) : 1547-1554. [epub] 20161128

Immunoglobulin genes in chronic lymphocytic leukemia: key to understanding the disease and improving risk stratification

. 2017 Jun ; 102 (6) : 968-971.

Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

. 2016 Aug ; 101 (8) : 959-67. [epub] 20160519

Additional trisomies amongst patients with chronic lymphocytic leukemia carrying trisomy 12: the accompanying chromosome makes a difference

. 2016 Jul ; 101 (7) : e299-302. [epub] 20160421

Innovation in the prognostication of chronic lymphocytic leukemia: how far beyond TP53 gene analysis can we go?

. 2016 Mar ; 101 (3) : 263-5.

Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations

. 2016 Feb 25 ; 127 (8) : 1007-16. [epub] 20151216

Autocrine Signaling by Wnt-5a Deregulates Chemotaxis of Leukemic Cells and Predicts Clinical Outcome in Chronic Lymphocytic Leukemia

. 2016 Jan 15 ; 22 (2) : 459-69. [epub] 20150803

Prognostic relevance of MYD88 mutations in CLL: the jury is still out

. 2015 Aug 20 ; 126 (8) : 1043-4.

Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia

. 2015 Jun 01 ; 212 (6) : 833-43. [epub] 20150518

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...