Performance of anti-CD19 chimeric antigen receptor T cells in genetically defined classes of chronic lymphocytic leukemia

. 2020 Mar ; 8 (1) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32217767

BACKGROUND: While achieving prolonged remissions in other B cell-derived malignancies, chimeric antigen receptor (CAR) T cells still underperform when injected into patients with chronic lymphocytic leukemia (CLL). We studied the influence of genetics on CLL response to anti-CD19 CAR T-cell therapy. METHODS: First, we studied 32 primary CLL samples composed of 26 immunoglobulin heavy-chain gene variable (IGHV)-unmutated (9 ATM-mutated, 8 TP53-mutated, and 9 without mutations in ATM, TP53, NOTCH1 or SF3B1) and 6 IGHV-mutated samples without mutations in the above-mentioned genes. Then, we mimicked the leukemic microenvironment in the primary cells by '2S stimulation' through interleukin-2 and nuclear factor kappa B. Finally, CRISPR/Cas9-generated ATM-knockout and TP53-knockout clones (four and seven, respectively) from CLL-derived cell lines MEC1 and HG3 were used. All these samples were exposed to CAR T cells. In vivo survival study in NSG mice using HG3 wild-type (WT), ATM-knockout or TP53-knockout cells was also performed. RESULTS: Primary unstimulated CLL cells were specifically eliminated after >24 hours of coculture with CAR T cells. '2S' stimulated cells showed increased survival when exposed to CAR T cells compared with unstimulated ones, confirming the positive effect of this stimulation on CLL cells' in vitro fitness. After 96 hours of coculture, there was no difference in survival among the genetic classes. Finally, CAR T cells were specifically activated in vitro in the presence of target knockout cell lines as shown by the production of interferon-γ when compared with control (CTRL) T cells (p=0.0020), but there was no difference in knockout cells' survival. In vivo, CAR T cells prolonged the survival of mice injected with WT, TP53-knockout and ATM-knockout HG3 tumor cells as compared with CTRL T cells (p=0.0485, 0.0204 and <0.0001, respectively). When compared with ATM-knockout, TP53-knockout disease was associated with an earlier time of onset (p<0.0001), higher tumor burden (p=0.0002) and inefficient T-cell engraftment (p=0.0012). CONCLUSIONS: While in vitro no differences in survival of CLL cells of various genetic backgrounds were observed, CAR T cells showed a different effectiveness at eradicating tumor cells in vivo depending on the driver mutation. Early disease onset, high-tumor burden and inefficient T-cell engraftment, associated with TP53-knockout tumors in our experimental setting, ultimately led to inferior performance of CAR T cells.

Zobrazit více v PubMed

Baliakas P, Hadzidimitriou A, Sutton L-A, et al. . Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015;29:329–36.10.1038/leu.2014.196 PubMed DOI

Stilgenbauer S, Schnaiter A, Paschka P, et al. . Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 2014;123:3247–54.10.1182/blood-2014-01-546150 PubMed DOI

Mato AR, Hill BT, Lamanna N, et al. . Optimal sequencing of ibrutinib, idelalisib, and venetoclax in chronic lymphocytic leukemia: results from a multicenter study of 683 patients. Ann Oncol 2017;28:1050–6.10.1093/annonc/mdx031 PubMed DOI

Kipps TJ, Stevenson FK, CJ W, et al. . Correction: chronic lymphocytic leukaemia. Nat Rev Dis Prim 2017;3:16096. PubMed PMC

Milone MC, Fish JD, Carpenito C, et al. . Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009;17:1453–64.10.1038/mt.2009.83 PubMed DOI PMC

Turtle CJ, Hay KA, Hanafi L-A, et al. . Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol 2017;35:3010–20.10.1200/JCO.2017.72.8519 PubMed DOI PMC

Porter DL, Hwang W-T, Frey NV, et al. . Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci Transl Med 2015;7:303ra13910.1126/scitranslmed.aac5415 PubMed DOI PMC

Maude SL, Laetsch TW, Buechner J, et al. . Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439–48.10.1056/NEJMoa1709866 PubMed DOI PMC

Locke FL, Ghobadi A, Jacobson CA, et al. . Long-Term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol 2019;20:31–42.10.1016/S1470-2045(18)30864-7 PubMed DOI PMC

Lorentzen CL, Straten PT. CD19-Chimeric antigen receptor T cells for treatment of chronic lymphocytic leukaemia and acute lymphoblastic leukaemia. Scand J Immunol 2015;82:307–19.10.1111/sji.12331 PubMed DOI

Fraietta JA, Lacey SF, Orlando EJ, et al. . Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med 2018;24:563–71.10.1038/s41591-018-0010-1 PubMed DOI PMC

Hallek M, Cheson BD, Catovsky D, et al. . Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International workshop on chronic lymphocytic leukemia updating the National cancer Institute-Working group 1996 guidelines. Blood 2008;111:5446–56.10.1182/blood-2007-06-093906 PubMed DOI PMC

Brazdilova K, Plevova K, Skuhrova Francova H, et al. . Multiple productive IgH rearrangements denote oligoclonality even in immunophenotypically monoclonal CLL. Leukemia 2018;32:234–6.10.1038/leu.2017.274 PubMed DOI PMC

Plevova K, Francova HS, Burckova K, et al. . Multiple productive immunoglobulin heavy chain gene rearrangements in chronic lymphocytic leukemia are mostly derived from independent clones. Haematologica 2014;99:329–38.10.3324/haematol.2013.087593 PubMed DOI PMC

Malcikova J, Tausch E, Rossi D, et al. . Eric recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-update on methodological approaches and results interpretation. Leukemia 2018;32:1070–80.10.1038/s41375-017-0007-7 PubMed DOI PMC

Malcikova J, Stano-Kozubik K, Tichy B, et al. . Detailed analysis of therapy-driven clonal evolution of TP53 mutations in chronic lymphocytic leukemia. Leukemia 2015;29:877–85.10.1038/leu.2014.297 PubMed DOI PMC

Navrkalova V, Young E, Baliakas P, et al. . ATM mutations in major stereotyped subsets of chronic lymphocytic leukemia: enrichment in subset #2 is associated with markedly short telomeres. Haematologica 2016;101:e369–73.10.3324/haematol.2016.142968 PubMed DOI PMC

Vavrova E, Kantorova B, Vonkova B, et al. . Fragment analysis represents a suitable approach for the detection of hotspot c.7541_7542delCT Notch1 mutation in chronic lymphocytic leukemia. Leuk Res 2017;60:145–50.10.1016/j.leukres.2017.08.001 PubMed DOI

Strefford JC, Sutton L-A, Baliakas P, et al. . Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia 2013;27:2196–9.10.1038/leu.2013.98 PubMed DOI

Rosén A, Bergh A-C, Gogok P, et al. . Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. Oncoimmunology 2012;1:18–27.10.4161/onci.1.1.18400 PubMed DOI PMC

Stacchini A, Aragno M, Vallario A, et al. . MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leuk Res 1999;23:127–36.10.1016/S0145-2126(98)00154-4 PubMed DOI

Imai C, Mihara K, Andreansky M, et al. . Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia 2004;18:676–84.10.1038/sj.leu.2403302 PubMed DOI

Oppermann S, Ylanko J, Shi Y, et al. . High-Content screening identifies kinase inhibitors that overcome venetoclax resistance in activated CLL cells. Blood 2016;128:934–47.10.1182/blood-2015-12-687814 PubMed DOI PMC

Xue W, Zender L, Miething C, et al. . Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007;445:656–60.10.1038/nature05529 PubMed DOI PMC

Ventura A, Kirsch DG, McLaughlin ME, et al. . Restoration of p53 function leads to tumour regression in vivo. Nature 2007;445:661–5.10.1038/nature05541 PubMed DOI

Rossi D, Cerri M, Deambrogi C, et al. . The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res 2009;15:995–1004.10.1158/1078-0432.CCR-08-1630 PubMed DOI

Landau DA, Tausch E, Taylor-Weiner AN, et al. . Mutations driving CLL and their evolution in progression and relapse. Nature 2015;526:525–30.10.1038/nature15395 PubMed DOI PMC

Bertilaccio MTS, Scielzo C, Simonetti G, et al. . Xenograft models of chronic lymphocytic leukemia: problems, pitfalls and future directions. Leukemia 2013;27:534–40.10.1038/leu.2012.268 PubMed DOI

Landau DA, Carter SL, Stojanov P, et al. . Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013;152:714–26.10.1016/j.cell.2013.01.019 PubMed DOI PMC

Guarini A, Marinelli M, Tavolaro S, et al. . Atm gene alterations in chronic lymphocytic leukemia patients induce a distinct gene expression profile and predict disease progression. Haematologica 2012;97:47–55.10.3324/haematol.2011.049270 PubMed DOI PMC

Close V, Close W, Kugler SJ, et al. . FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood 2019;133:830–9.10.1182/blood-2018-09-874529 PubMed DOI

Quentmeier H, Pommerenke C, Ammerpohl O, et al. . Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation. Oncotarget 2016;7:63456–65.10.18632/oncotarget.11524 PubMed DOI PMC

Brentjens RJ, Rivière I, Park JH, et al. . Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011;118:4817–28.10.1182/blood-2011-04-348540 PubMed DOI PMC

Porter DL, Levine BL, Kalos M, et al. . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365:725–33.10.1056/NEJMoa1103849 PubMed DOI PMC

Oscier DG, Gardiner AC, Mould SJ, et al. . Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood 2002;100:1177–84.10.1182/blood.V100.4.1177.h81602001177_1177_1184 PubMed DOI

Austen B, Skowronska A, Baker C, et al. . Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 2007;25:5448–57.10.1200/JCO.2007.11.2649 PubMed DOI

Yang CH, Wang Y, Sims M, et al. . MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway. Oncotarget 2017;8:112980–91.10.18632/oncotarget.22945 PubMed DOI PMC

Liu X, Li F, Huang Q, et al. . Self-Inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res 2017;27:764–83.10.1038/cr.2017.41 PubMed DOI PMC

Hombach AA, Görgens A, Chmielewski M, et al. . Superior Therapeutic Index in Lymphoma Therapy: CD30(+) CD34(+) Hematopoietic Stem Cells Resist a Chimeric Antigen Receptor T-cell Attack. Mol Ther 2016;24:1423–34.10.1038/mt.2016.82 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...