Hypermethylation of CD19 promoter enables antigen-negative escape to CART-19 in vivo and in vitro
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34413165
PubMed Central
PMC8378389
DOI
10.1136/jitc-2021-002352
PII: jitc-2021-002352
Knihovny.cz E-zdroje
- Klíčová slova
- B-lymphocytes, antigens, chimeric antigen, hematologic neoplasms, receptors, translational medical research,
- MeSH
- antigeny CD19 imunologie MeSH
- lidé MeSH
- metylace DNA imunologie MeSH
- myši MeSH
- receptory antigenů T-buněk imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD19 MeSH
- CTL019 chimeric antigen receptor MeSH Prohlížeč
- receptory antigenů T-buněk MeSH
BACKGROUND: Anti-CD19 chimeric antigen receptor T cells (CART-19) frequently induce remissions in hemato-oncological patients with recurred and/or refractory B-cell tumors. However, malignant cells sometimes escape the immunotherapeutic targeting by CD19 gene mutations, alternative splicing or lineage switch, commonly causing lack of CD19 expression on the surface of neoplastic cells. We assumed that, in addition to the known mechanisms, other means could act on CD19 to drive antigen-negative relapse. METHODS: Herein, we studied the mechanism of antigen loss in an in vivo CD19-negative recurrence model of chronic lymphocytic leukemia (CLL) to CART-19, established using NOD-scid IL2Rgnull mice and HG3 cell line. We validated our findings in vitro in immortalized B-cell lines and primary CLL cells. RESULTS: In our in vivo CLL recurrence model, up to 70% of CART-19-treated mice eventually recurred with CD19-negative disease weeks after initial positive response. We found that the lack of CD19 expression was caused by promoter DNA hypermethylation. Importantly, the expression loss was partially reversible by treatment with a demethylating agent. Moreover, this escape mechanism was common for 3 B-cell immortalized lines as well as primary CLL cells, as assessed by in vitro coculture experiments. CONCLUSIONS: Epigenetically driven antigen escape could represent a novel, yet at least partially reversible, means of CD19 loss to CART-19 in B-cell tumors.
Central European Institute of Technology Masaryk University Brno Czech Republic
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Scheuermann RH, Racila E. CD19 antigen in leukemia and lymphoma diagnosis and immunotherapy. Leuk Lymphoma 1995;18:385–97. 10.3109/10428199509059636 PubMed DOI
Chavez JC, Bachmeier C, Kharfan-Dabaja MA. CAR T-cell therapy for B-cell lymphomas: clinical trial results of available products. Ther Adv Hematol 2019;10:204062071984158. 10.1177/2040620719841581 PubMed DOI PMC
DiNofia AM, Maude SL. Chimeric antigen receptor T-cell therapy clinical results in pediatric and young adult B-ALL. Hemasphere 2019;3:e279. 10.1097/HS9.0000000000000279 PubMed DOI PMC
Turtle CJ, Hay KA, Hanafi L-A, et al. . Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J Clin Oncol 2017;35:3010–20. 10.1200/JCO.2017.72.8519 PubMed DOI PMC
Porter DL, Levine BL, Kalos M, et al. . Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011;365:725–33. 10.1056/NEJMoa1103849 PubMed DOI PMC
Grupp SA, Kalos M, Barrett D, et al. . Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368:1509–18. 10.1056/NEJMoa1215134 PubMed DOI PMC
Xu X, Sun Q, Liang X, et al. . Mechanisms of relapse after CD19 CAR T-cell therapy for acute lymphoblastic leukemia and its prevention and treatment strategies. Front Immunol 2019;10:2664. 10.3389/fimmu.2019.02664 PubMed DOI PMC
Shalabi H, Kraft IL, Wang H-W, et al. . Sequential loss of tumor surface antigens following chimeric antigen receptor T-cell therapies in diffuse large B-cell lymphoma. Haematologica 2018;103:e215–8. 10.3324/haematol.2017.183459 PubMed DOI PMC
Sotillo E, Barrett DM, Black KL, et al. . Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015;5:1282–95. 10.1158/2159-8290.CD-15-1020 PubMed DOI PMC
Orlando EJ, Han X, Tribouley C, et al. . Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med 2018;24:1504–6. 10.1038/s41591-018-0146-z PubMed DOI
Fischer J, Paret C, El Malki K, et al. . CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. J Immunother 2017;40:187–95. 10.1097/CJI.0000000000000169 PubMed DOI PMC
Gardner R, Wu D, Cherian S, et al. . Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 2016;127:2406–10. 10.1182/blood-2015-08-665547 PubMed DOI PMC
Jacoby E, Nguyen SM, Fountaine TJ, et al. . CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity. Nat Commun 2016;7:12320. 10.1038/ncomms12320 PubMed DOI PMC
Hamieh M, Dobrin A, Cabriolu A, et al. . CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape. Nature 2019;568:112–6. 10.1038/s41586-019-1054-1 PubMed DOI PMC
Mancikova V, Peschelova H, Kozlova V, et al. . Performance of anti-CD19 chimeric antigen receptor T cells in genetically defined classes of chronic lymphocytic leukemia. J Immunother Cancer 2020;8:e000471. 10.1136/jitc-2019-000471 PubMed DOI PMC
Mancikova V, Buj R, Castelblanco E. DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. Int J Cancer 2020;8:e000471. PubMed
Hallek M, Cheson BD, Catovsky D, et al. . Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International workshop on chronic lymphocytic leukemia updating the National cancer Institute-Working group 1996 guidelines. Blood 2008;111:5446–56. 10.1182/blood-2007-06-093906 PubMed DOI PMC
Pridans C, Holmes ML, Polli M, et al. . Identification of Pax5 target genes in early B cell differentiation. J Immunol 2008;180:1719–28. 10.4049/jimmunol.180.3.1719 PubMed DOI
Mancikova V, Smida M. Current state of car T-cell therapy in chronic lymphocytic leukemia. Int J Mol Sci 2021;22:5536. 10.3390/ijms22115536 PubMed DOI PMC
Zhang Z, Chen X, Tian Y, et al. . Point mutation in CD19 facilitates immune escape of B cell lymphoma from CAR-T cell therapy. J Immunother Cancer 2020;8:e001150. 10.1136/jitc-2020-001150 PubMed DOI PMC
Tong W, Kuang S-Q, Wierda W, et al. . Identification of Multiple Promoter Associated CpG Islands Commonly Methylated in Both Acute Lymphocytic Leukemia (ALL) and Chronic Lymphocytic Leukemia(CLL) Using Novel Genome-Wide Microarray Technique: Implications for Common Primordial Molecular Pathways in Lymphoid Leukemias. Blood 2008;112:2263. 10.1182/blood.V112.11.2263.2263 DOI
Tong W-G, Wierda WG, Lin E, et al. . Genome-wide DNA methylation profiling of chronic lymphocytic leukemia allows identification of epigenetically repressed molecular pathways with clinical impact. Epigenetics 2010;5:499–508. 10.4161/epi.5.6.12179 PubMed DOI PMC
Rabilloud T, Potier D, Pankaew S, et al. . Single-cell profiling identifies pre-existing CD19-negative subclones in a B-ALL patient with CD19-negative relapse after CAR-T therapy. Nat Commun 2021;12:865. 10.1038/s41467-021-21168-6 PubMed DOI PMC