• This record comes from PubMed

Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia

. 2015 Jun 01 ; 212 (6) : 833-43. [epub] 20150518

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 CA081554 NCI NIH HHS - United States
CA081554 NCI NIH HHS - United States
CA81554 NCI NIH HHS - United States

NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.

Cancer Sciences Academic Unit Faculty of Medicine University of Southampton Southampton SO16 6YD England UK

Central European Institute of Technology Masaryk University and University Hospital Brno 601 77 Brno Czech Republic

Clinical Epidemiology Unit Department of Medicine Karolinska Institutet 171 76 Stockholm Sweden

Department of Hematology Pitié Salpêtrière Hospital F 75013 Paris France Cordeliers Research Center UMR_S 1138 UPMC University of Paris 6 F 75005 Paris France

Department of Immunology Erasmus MC University Medical Center Rotterdam 3000 CE Rotterdam Netherlands

Department of Immunology Genetics and Pathology Science for Life Laboratory Uppsala University 751 05 Uppsala Sweden

Department of Immunology Genetics and Pathology Science for Life Laboratory Uppsala University 751 05 Uppsala Sweden Department of Biochemistry and Biophysics Science for Life Laboratory Stockholm University 106 91 Stockholm Sweden

Department of Immunology Genetics and Pathology Science for Life Laboratory Uppsala University 751 05 Uppsala Sweden Institute of Applied Biosciences Center for Research and Technology Hellas 57001 Thessaloniki Greece

Department of Laboratory Medicine Division of Pathology Karolinska Institutet and Karolinska University Hospital 141 86 Huddinge Stockholm Sweden

Department of Laboratory Medicine Lund Stem Cell Center Lund University 22184 Lund Sweden

Divisione di Oncologia Sperimentale Dipartimento di Onco Ematologia IRCCS Istituto Scientifico San Raffaele and Fondazione Centro San Raffaele 20132 Milano Italy Università Vita Salute San Raffaele 20132 Milano Italy

Hematology Department General Hospital of Nikea 18454 Piraeus Greece

The Karches Center for Chronic Lymphocytic Leukemia Research The Feinstein Institute for Medical Research Manhasset NY 11030

Comment In

PubMed

See more in PubMed

Agathangelidis A., Darzentas N., Hadzidimitriou A., Brochet X., Murray F., Yan X.J., Davis Z., van Gastel-Mol E.J., Tresoldi C., Chu C.C., et al. . 2012. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 119:4467–4475. 10.1182/blood-2011-11-393694 PubMed DOI PMC

Alves B.N., Tsui R., Almaden J., Shokhirev M.N., Davis-Turak J., Fujimoto J., Birnbaum H., Ponomarenko J., and Hoffmann A.. 2014. IκBε is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J. Immunol. 192:3121–3132. 10.4049/jimmunol.1302351 PubMed DOI PMC

Andrews N.C., and Faller D.V.. 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19:2499 10.1093/nar/19.9.2499 PubMed DOI PMC

Baliakas P., Hadzidimitriou A., Sutton L.-A., Minga E., Agathangelidis A., Nichelatti M., Tsanousa A., Scarfò L., Davis Z., Yan X.-J., et al. . 2014. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. The Lancet Haematology. 1:e74–e84. 10.1016/S2352-3026(14)00005-2 PubMed DOI

Baliakas P., Hadzidimitriou A., Sutton L.A., Rossi D., Minga E., Villamor N., Larrayoz M., Kminkova J., Agathangelidis A., Davis Z., et al. . European Research Initiative on CLL (ERIC). 2015. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 29:329–336. 10.1038/leu.2014.196 PubMed DOI

Benjamini Y., and Hochberg Y.. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B. 57:289–300.

Bonizzi G., and Karin M.. 2004. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25:280–288. 10.1016/j.it.2004.03.008 PubMed DOI

Compagno M., Lim W.K., Grunn A., Nandula S.V., Brahmachary M., Shen Q., Bertoni F., Ponzoni M., Scandurra M., Califano A., et al. . 2009. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature. 459:717–721. 10.1038/nature07968 PubMed DOI PMC

Damm F., Mylonas E., Cosson A., Yoshida K., Della Valle V., Mouly E., Diop M., Scourzic L., Shiraishi Y., Chiba K., et al. . 2014. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4:1088–1101. 10.1158/2159-8290.CD-14-0104 PubMed DOI

Davis R.E., Ngo V.N., Lenz G., Tolar P., Young R.M., Romesser P.B., Kohlhammer H., Lamy L., Zhao H., Yang Y., et al. . 2010. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 463:88–92. 10.1038/nature08638 PubMed DOI PMC

Emmerich F., Theurich S., Hummel M., Haeffker A., Vry M.S., Döhner K., Bommert K., Stein H., and Dörken B.. 2003. Inactivating I kappa B epsilon mutations in Hodgkin/Reed–Sternberg cells. J. Pathol. 201:413–420. 10.1002/path.1454 PubMed DOI

Gao L., Ma J., Mannoor K., Guarnera M.A., Shetty A., Zhan M., Xing L., Stass S.A., and Jiang F.. 2015. Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int. J. Cancer. 136:E623–E629. 10.1002/ijc.29169 PubMed DOI

Gunawardana J., Chan F.C., Telenius A., Woolcock B., Kridel R., Tan K.L., Ben-Neriah S., Mottok A., Lim R.S., Boyle M., et al. . 2014. Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat. Genet. 46:329–335. 10.1038/ng.2900 PubMed DOI

Hallek M., Cheson B.D., Catovsky D., Caligaris-Cappio F., Dighiero G., Döhner H., Hillmen P., Keating M.J., Montserrat E., Rai K.R., and Kipps T.J.. International Workshop on Chronic Lymphocytic Leukemia. 2008. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 111:5446–5456. 10.1182/blood-2007-06-093906 PubMed DOI PMC

Herishanu Y., Pérez-Galán P., Liu D., Biancotto A., Pittaluga S., Vire B., Gibellini F., Njuguna N., Lee E., Stennett L., et al. . 2011. The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 117:563–574. 10.1182/blood-2010-05-284984 PubMed DOI PMC

Hömig-Hölzel C., Hojer C., Rastelli J., Casola S., Strobl L.J., Müller W., Quintanilla-Martinez L., Gewies A., Ruland J., Rajewsky K., and Zimber-Strobl U.. 2008. Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-κB pathway and promotes lymphomagenesis. J. Exp. Med. 205:1317–1329. 10.1084/jem.20080238 PubMed DOI PMC

Irizarry R.A., Hobbs B., Collin F., Beazer-Barclay Y.D., Antonellis K.J., Scherf U., and Speed T.P.. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 10.1093/biostatistics/4.2.249 PubMed DOI

Klein U., Tu Y., Stolovitzky G.A., Mattioli M., Cattoretti G., Husson H., Freedman A., Inghirami G., Cro L., Baldini L., et al. . 2001. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194:1625–1638. 10.1084/jem.194.11.1625 PubMed DOI PMC

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal. 17:10–12. 10.14806/ej.17.1.200 DOI

Mathews Griner L.A., Guha R., Shinn P., Young R.M., Keller J.M., Liu D., Goldlust I.S., Yasgar A., McKnight C., Boxer M.B., et al. . 2014. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA. 111:2349–2354. 10.1073/pnas.1311846111 PubMed DOI PMC

Nilsson J., Söderberg O., Nilsson K., and Rosén A.. 2000. Thioredoxin prolongs survival of B-type chronic lymphocytic leukemia cells. Blood. 95:1420–1426. PubMed

Rosén A., Uggla C., Szigeti R., Kallin B., Lindqvist C., and Zeuthen J.. 1986. A T-helper cell x Molt4 human hybridoma constitutively producing B-cell stimulatory and inhibitory factors. Lymphokine Res. 5:185–204. PubMed

Rosén A., Bergh A.C., Gogok P., Evaldsson C., Myhrinder A.L., Hellqvist E., Rasul A., Björkholm M., Jansson M., Mansouri L., et al. . 2012. Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. OncoImmunology. 1:18–27. 10.4161/onci.1.1.18400 PubMed DOI PMC

Rosenwald A., Alizadeh A.A., Widhopf G., Simon R., Davis R.E., Yu X., Yang L., Pickeral O.K., Rassenti L.Z., Powell J., et al. . 2001. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194:1639–1648. 10.1084/jem.194.11.1639 PubMed DOI PMC

Rossi D., Ciardullo C., and Gaidano G.. 2013a. Genetic aberrations of signaling pathways in lymphomagenesis: revelations from next generation sequencing studies. Semin. Cancer Biol. 23:422–430. 10.1016/j.semcancer.2013.04.002 PubMed DOI

Rossi D., Spina V., Bomben R., Rasi S., Dal-Bo M., Bruscaggin A., Rossi F.M., Monti S., Degan M., Ciardullo C., et al. . 2013b. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. Blood. 121:4902–4905. 10.1182/blood-2013-02-486209 PubMed DOI

Siemer D., Kurth J., Lang S., Lehnerdt G., Stanelle J., and Küppers R.. 2008. EBV transformation overrides gene expression patterns of B cell differentiation stages. Mol. Immunol. 45:3133–3141. 10.1016/j.molimm.2008.03.002 PubMed DOI

Smedby K.E., Hjalgrim H., Melbye M., Torrång A., Rostgaard K., Munksgaard L., Adami J., Hansen M., Porwit-MacDonald A., Jensen B.A., et al. . 2005. Ultraviolet radiation exposure and risk of malignant lymphomas. J. Natl. Cancer Inst. 97:199–209. 10.1093/jnci/dji022 PubMed DOI

Söderberg O., Thunberg U., Weigelt C., Christiansen I., Tötterman T.H., Carlsson M., Sällström J., and Nilsson K.. 1999. Staphylococcus aureus Cowan strain 1 activation of B-chronic lymphocytic leukaemia cells augments the response to CD40 stimulation. Scand. J. Immunol. 50:363–370. 10.1046/j.1365-3083.1999.00604.x PubMed DOI

Söderberg O., Gullberg M., Jarvius M., Ridderstråle K., Leuchowius K.J., Jarvius J., Wester K., Hydbring P., Bahram F., Larsson L.G., and Landegren U.. 2006. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 3:995–1000. 10.1038/nmeth947 PubMed DOI

Stamatopoulos K., Belessi C., Moreno C., Boudjograh M., Guida G., Smilevska T., Belhoul L., Stella S., Stavroyianni N., Crespo M., et al. . 2007. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood. 109:259–270. 10.1182/blood-2006-03-012948 PubMed DOI

Staudt L.M. 2010. Oncogenic activation of NF-κB. Cold Spring Harb. Perspect. Biol. 2:a000109 10.1101/cshperspect.a000109 PubMed DOI PMC

Strefford J.C., Sutton L.A., Baliakas P., Agathangelidis A., Malčíková J., Plevova K., Scarfó L., Davis Z., Stalika E., Cortese D., et al. . 2013. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia. 27:2196–2199. 10.1038/leu.2013.98 PubMed DOI

Wang K., Li M., and Hakonarson H.. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38:e164 10.1093/nar/gkq603 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

IκBε deficiency accelerates disease development in chronic lymphocytic leukemia

. 2024 Jun ; 38 (6) : 1287-1298. [epub] 20240404

Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY

. 2023 Feb ; 37 (2) : 339-347. [epub] 20221224

Comparative analysis of targeted next-generation sequencing panels for the detection of gene mutations in chronic lymphocytic leukemia: an ERIC multi-center study

. 2021 Mar 01 ; 106 (3) : 682-691. [epub] 20210301

CLL cells cumulate genetic aberrations prior to the first therapy even in outwardly inactive disease phase

. 2019 Feb ; 33 (2) : 518-558. [epub] 20180912

Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons

. 2017 Sep 19 ; 8 (41) : 71234-71248. [epub] 20170724

Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations

. 2017 Jul ; 31 (7) : 1477-1481. [epub] 20170425

EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia

. 2017 Jul ; 31 (7) : 1547-1554. [epub] 20161128

Different spectra of recurrent gene mutations in subsets of chronic lymphocytic leukemia harboring stereotyped B-cell receptors

. 2016 Aug ; 101 (8) : 959-67. [epub] 20160519

Whole-exome sequencing in relapsing chronic lymphocytic leukemia: clinical impact of recurrent RPS15 mutations

. 2016 Feb 25 ; 127 (8) : 1007-16. [epub] 20151216

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...