Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 CA081554
NCI NIH HHS - United States
CA081554
NCI NIH HHS - United States
CA81554
NCI NIH HHS - United States
PubMed
25987724
PubMed Central
PMC4451125
DOI
10.1084/jem.20142009
PII: jem.20142009
Knihovny.cz E-resources
- MeSH
- Lymphoma, B-Cell metabolism MeSH
- Cell Nucleus metabolism MeSH
- Chromosome Aberrations MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell genetics metabolism MeSH
- Cytoplasm metabolism MeSH
- Gene Deletion MeSH
- I-kappa B Kinase genetics physiology MeSH
- Cohort Studies MeSH
- Humans MeSH
- Lymphoma, B-Cell, Marginal Zone metabolism MeSH
- Lymphoma, Mantle-Cell metabolism MeSH
- DNA Mutational Analysis MeSH
- NF-kappa B metabolism MeSH
- Frameshift Mutation MeSH
- Receptors, Antigen, B-Cell metabolism MeSH
- Gene Expression Regulation, Leukemic * MeSH
- Oligonucleotide Array Sequence Analysis MeSH
- Signal Transduction MeSH
- Gene Expression Profiling MeSH
- Cell Survival MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- I-kappa B Kinase MeSH
- NF-kappa B MeSH
- Receptors, Antigen, B-Cell MeSH
NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.
Clinical Epidemiology Unit Department of Medicine Karolinska Institutet 171 76 Stockholm Sweden
Department of Laboratory Medicine Lund Stem Cell Center Lund University 22184 Lund Sweden
Hematology Department General Hospital of Nikea 18454 Piraeus Greece
See more in PubMed
Agathangelidis A., Darzentas N., Hadzidimitriou A., Brochet X., Murray F., Yan X.J., Davis Z., van Gastel-Mol E.J., Tresoldi C., Chu C.C., et al. . 2012. Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood. 119:4467–4475. 10.1182/blood-2011-11-393694 PubMed DOI PMC
Alves B.N., Tsui R., Almaden J., Shokhirev M.N., Davis-Turak J., Fujimoto J., Birnbaum H., Ponomarenko J., and Hoffmann A.. 2014. IκBε is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J. Immunol. 192:3121–3132. 10.4049/jimmunol.1302351 PubMed DOI PMC
Andrews N.C., and Faller D.V.. 1991. A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res. 19:2499 10.1093/nar/19.9.2499 PubMed DOI PMC
Baliakas P., Hadzidimitriou A., Sutton L.-A., Minga E., Agathangelidis A., Nichelatti M., Tsanousa A., Scarfò L., Davis Z., Yan X.-J., et al. . 2014. Clinical effect of stereotyped B-cell receptor immunoglobulins in chronic lymphocytic leukaemia: a retrospective multicentre study. The Lancet Haematology. 1:e74–e84. 10.1016/S2352-3026(14)00005-2 PubMed DOI
Baliakas P., Hadzidimitriou A., Sutton L.A., Rossi D., Minga E., Villamor N., Larrayoz M., Kminkova J., Agathangelidis A., Davis Z., et al. . European Research Initiative on CLL (ERIC). 2015. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia. 29:329–336. 10.1038/leu.2014.196 PubMed DOI
Benjamini Y., and Hochberg Y.. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc., B. 57:289–300.
Bonizzi G., and Karin M.. 2004. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25:280–288. 10.1016/j.it.2004.03.008 PubMed DOI
Compagno M., Lim W.K., Grunn A., Nandula S.V., Brahmachary M., Shen Q., Bertoni F., Ponzoni M., Scandurra M., Califano A., et al. . 2009. Mutations of multiple genes cause deregulation of NF-κB in diffuse large B-cell lymphoma. Nature. 459:717–721. 10.1038/nature07968 PubMed DOI PMC
Damm F., Mylonas E., Cosson A., Yoshida K., Della Valle V., Mouly E., Diop M., Scourzic L., Shiraishi Y., Chiba K., et al. . 2014. Acquired initiating mutations in early hematopoietic cells of CLL patients. Cancer Discov. 4:1088–1101. 10.1158/2159-8290.CD-14-0104 PubMed DOI
Davis R.E., Ngo V.N., Lenz G., Tolar P., Young R.M., Romesser P.B., Kohlhammer H., Lamy L., Zhao H., Yang Y., et al. . 2010. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 463:88–92. 10.1038/nature08638 PubMed DOI PMC
Emmerich F., Theurich S., Hummel M., Haeffker A., Vry M.S., Döhner K., Bommert K., Stein H., and Dörken B.. 2003. Inactivating I kappa B epsilon mutations in Hodgkin/Reed–Sternberg cells. J. Pathol. 201:413–420. 10.1002/path.1454 PubMed DOI
Gao L., Ma J., Mannoor K., Guarnera M.A., Shetty A., Zhan M., Xing L., Stass S.A., and Jiang F.. 2015. Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int. J. Cancer. 136:E623–E629. 10.1002/ijc.29169 PubMed DOI
Gunawardana J., Chan F.C., Telenius A., Woolcock B., Kridel R., Tan K.L., Ben-Neriah S., Mottok A., Lim R.S., Boyle M., et al. . 2014. Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat. Genet. 46:329–335. 10.1038/ng.2900 PubMed DOI
Hallek M., Cheson B.D., Catovsky D., Caligaris-Cappio F., Dighiero G., Döhner H., Hillmen P., Keating M.J., Montserrat E., Rai K.R., and Kipps T.J.. International Workshop on Chronic Lymphocytic Leukemia. 2008. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 111:5446–5456. 10.1182/blood-2007-06-093906 PubMed DOI PMC
Herishanu Y., Pérez-Galán P., Liu D., Biancotto A., Pittaluga S., Vire B., Gibellini F., Njuguna N., Lee E., Stennett L., et al. . 2011. The lymph node microenvironment promotes B-cell receptor signaling, NF-κB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 117:563–574. 10.1182/blood-2010-05-284984 PubMed DOI PMC
Hömig-Hölzel C., Hojer C., Rastelli J., Casola S., Strobl L.J., Müller W., Quintanilla-Martinez L., Gewies A., Ruland J., Rajewsky K., and Zimber-Strobl U.. 2008. Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-κB pathway and promotes lymphomagenesis. J. Exp. Med. 205:1317–1329. 10.1084/jem.20080238 PubMed DOI PMC
Irizarry R.A., Hobbs B., Collin F., Beazer-Barclay Y.D., Antonellis K.J., Scherf U., and Speed T.P.. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 4:249–264. 10.1093/biostatistics/4.2.249 PubMed DOI
Klein U., Tu Y., Stolovitzky G.A., Mattioli M., Cattoretti G., Husson H., Freedman A., Inghirami G., Cro L., Baldini L., et al. . 2001. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J. Exp. Med. 194:1625–1638. 10.1084/jem.194.11.1625 PubMed DOI PMC
Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal. 17:10–12. 10.14806/ej.17.1.200 DOI
Mathews Griner L.A., Guha R., Shinn P., Young R.M., Keller J.M., Liu D., Goldlust I.S., Yasgar A., McKnight C., Boxer M.B., et al. . 2014. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. Proc. Natl. Acad. Sci. USA. 111:2349–2354. 10.1073/pnas.1311846111 PubMed DOI PMC
Nilsson J., Söderberg O., Nilsson K., and Rosén A.. 2000. Thioredoxin prolongs survival of B-type chronic lymphocytic leukemia cells. Blood. 95:1420–1426. PubMed
Rosén A., Uggla C., Szigeti R., Kallin B., Lindqvist C., and Zeuthen J.. 1986. A T-helper cell x Molt4 human hybridoma constitutively producing B-cell stimulatory and inhibitory factors. Lymphokine Res. 5:185–204. PubMed
Rosén A., Bergh A.C., Gogok P., Evaldsson C., Myhrinder A.L., Hellqvist E., Rasul A., Björkholm M., Jansson M., Mansouri L., et al. . 2012. Lymphoblastoid cell line with B1 cell characteristics established from a chronic lymphocytic leukemia clone by in vitro EBV infection. OncoImmunology. 1:18–27. 10.4161/onci.1.1.18400 PubMed DOI PMC
Rosenwald A., Alizadeh A.A., Widhopf G., Simon R., Davis R.E., Yu X., Yang L., Pickeral O.K., Rassenti L.Z., Powell J., et al. . 2001. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J. Exp. Med. 194:1639–1648. 10.1084/jem.194.11.1639 PubMed DOI PMC
Rossi D., Ciardullo C., and Gaidano G.. 2013a. Genetic aberrations of signaling pathways in lymphomagenesis: revelations from next generation sequencing studies. Semin. Cancer Biol. 23:422–430. 10.1016/j.semcancer.2013.04.002 PubMed DOI
Rossi D., Spina V., Bomben R., Rasi S., Dal-Bo M., Bruscaggin A., Rossi F.M., Monti S., Degan M., Ciardullo C., et al. . 2013b. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. Blood. 121:4902–4905. 10.1182/blood-2013-02-486209 PubMed DOI
Siemer D., Kurth J., Lang S., Lehnerdt G., Stanelle J., and Küppers R.. 2008. EBV transformation overrides gene expression patterns of B cell differentiation stages. Mol. Immunol. 45:3133–3141. 10.1016/j.molimm.2008.03.002 PubMed DOI
Smedby K.E., Hjalgrim H., Melbye M., Torrång A., Rostgaard K., Munksgaard L., Adami J., Hansen M., Porwit-MacDonald A., Jensen B.A., et al. . 2005. Ultraviolet radiation exposure and risk of malignant lymphomas. J. Natl. Cancer Inst. 97:199–209. 10.1093/jnci/dji022 PubMed DOI
Söderberg O., Thunberg U., Weigelt C., Christiansen I., Tötterman T.H., Carlsson M., Sällström J., and Nilsson K.. 1999. Staphylococcus aureus Cowan strain 1 activation of B-chronic lymphocytic leukaemia cells augments the response to CD40 stimulation. Scand. J. Immunol. 50:363–370. 10.1046/j.1365-3083.1999.00604.x PubMed DOI
Söderberg O., Gullberg M., Jarvius M., Ridderstråle K., Leuchowius K.J., Jarvius J., Wester K., Hydbring P., Bahram F., Larsson L.G., and Landegren U.. 2006. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods. 3:995–1000. 10.1038/nmeth947 PubMed DOI
Stamatopoulos K., Belessi C., Moreno C., Boudjograh M., Guida G., Smilevska T., Belhoul L., Stella S., Stavroyianni N., Crespo M., et al. . 2007. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood. 109:259–270. 10.1182/blood-2006-03-012948 PubMed DOI
Staudt L.M. 2010. Oncogenic activation of NF-κB. Cold Spring Harb. Perspect. Biol. 2:a000109 10.1101/cshperspect.a000109 PubMed DOI PMC
Strefford J.C., Sutton L.A., Baliakas P., Agathangelidis A., Malčíková J., Plevova K., Scarfó L., Davis Z., Stalika E., Cortese D., et al. . 2013. Distinct patterns of novel gene mutations in poor-prognostic stereotyped subsets of chronic lymphocytic leukemia: the case of SF3B1 and subset #2. Leukemia. 27:2196–2199. 10.1038/leu.2013.98 PubMed DOI
Wang K., Li M., and Hakonarson H.. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38:e164 10.1093/nar/gkq603 PubMed DOI PMC
IκBε deficiency accelerates disease development in chronic lymphocytic leukemia
Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons
Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: updated ERIC recommendations
EGR2 mutations define a new clinically aggressive subgroup of chronic lymphocytic leukemia