Preparation of highly wettable coatings on Ti-6Al-4V ELI alloy for traumatological implants using micro-arc oxidation in an alkaline electrolyte
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33188241
PubMed Central
PMC7666130
DOI
10.1038/s41598-020-76448-w
PII: 10.1038/s41598-020-76448-w
Knihovny.cz E-resources
- MeSH
- Electrolytes * MeSH
- Photoelectron Spectroscopy MeSH
- Humans MeSH
- Microscopy, Atomic Force MeSH
- Microscopy, Electron, Scanning MeSH
- Osseointegration physiology MeSH
- Oxidation-Reduction MeSH
- Cell Proliferation physiology MeSH
- Wettability * MeSH
- Cell Survival physiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Electrolytes * MeSH
Pulsed micro-arc oxidation (MAO) in a strongly alkaline electrolyte (pH > 13), consisting of Na2SiO3⋅9H2O and NaOH, was used to form a thin porous oxide coating consisting of two layers differing in chemical and phase composition. The unique procedure, combining MAO and removal of the outer layer by blasting, enables to prepare a coating suitable for application in temporary traumatological implants. A bilayer formed in an alkaline electrolyte environment during the application of MAO enables the formation of a wear-resistant layer with silicon incorporated in the oxide phase. Following the removal of the outer rutile-containing porous layer, the required coating properties for traumatological applications were determined. The prepared surfaces were characterized by scanning electron microscopy, X-ray diffraction patterns, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. Cytocompatibility was evaluated using human osteoblast-like Saos-2 cells. The newly-developed surface modifications of Ti-6Al-4V ELI alloy performed satisfactorily in all cellular tests in comparison with MAO-untreated alloy and standard tissue culture plastic. High cell viability was supported, but the modifications allowed only relatively slow cell proliferation, and showed only moderate osseointegration potential without significant support for matrix mineralization. Materials with these properties are promising for utilization in temporary traumatological implants.
See more in PubMed
Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–21. doi: 10.1016/j.biomaterials.2004.02.005. PubMed DOI
Zaffe D, Bertoldi C, Consolo U. Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti–6Al–4V screws, hydroxyapatite granules. Biomaterials. 2004;25:3837–3844. doi: 10.1016/j.biomaterials.2003.10.020. PubMed DOI
Zhong C, et al. Laser metal deposition of Ti6Al4V—a brief review. Appl. Sci. 2020;10:764. doi: 10.3390/app10030764. DOI
Shah FA, Trobos M, Thomsen P, Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—Is one truly better than the other? Mater. Sci. Eng. C Mater. Biol. Appl. 2016;62:960–966. doi: 10.1016/j.msec.2016.01.032. PubMed DOI
Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004;47:49–121. doi: 10.1016/j.mser.2004.11.001. DOI
Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. (Springer-Verlag, 2001). 10.1007/978-3-642-56486-4.
Kasemo B, Lausmaa J. Aspects of surface physics on titanium implants. Swed. Dent. J. Suppl. 1985;28:19–36. PubMed
Hanawa T. Metal ion release from metal implants. Mater. Sci. Eng. C. 2004;24:745–752. doi: 10.1016/j.msec.2004.08.018. DOI
Santos-Coquillat A, et al. Bioactive multi-elemental PEO-coatings on titanium for dental implant applications. Mater. Sci. Eng. C. 2019;97:738–752. doi: 10.1016/j.msec.2018.12.097. PubMed DOI
Wang YM, Jia DC, Guo LX, Lei TQ, Jiang BL. Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy. Mater. Chem. Phys. 2005;90:128–133. doi: 10.1016/j.matchemphys.2004.10.025. DOI
Kaluđerović MR, Schreckenbach JP, Graf H-L. Titanium dental implant surfaces obtained by anodic spark deposition—from the past to the future. Mater. Sci. Eng. C. 2016;69:1429–1441. doi: 10.1016/j.msec.2016.07.068. PubMed DOI
Serruys Y, Sakout T, Gorse D. Anodic oxidation of titanium in 1M H2SO4, studied by Rutherford backscattering. Surf. Sci. 1993;282:279–287. doi: 10.1016/0039-6028(93)90934-C. DOI
Wilhelmsen W. Electron transfer reactions of vanadium (IV)/(V) on passive titanium. Electrochim. acta. 1988;33:1653–1660. doi: 10.1016/0013-4686(88)80238-X. DOI
Li L-H, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–2875. doi: 10.1016/j.biomaterials.2003.09.048. PubMed DOI
Oh H-J, Lee J-H, Jeong Y, Kim Y-J, Chi C-S. Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surf. Coat. Technol. 2005;198:247–252. doi: 10.1016/j.surfcoat.2004.10.029. DOI
Wang J, et al. Effect of electrolyte composition on the microstructure and bio-corrosion behavior of micro-arc oxidized coatings on biomedical Ti6Al4V alloy. J. Mater. Res. Technol. 2020;9:1477–1490. doi: 10.1016/j.jmrt.2019.11.073. DOI
Cimenoglu H, et al. Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications. Mater. Charact. 2011;62:304–311. doi: 10.1016/j.matchar.2011.01.002. DOI
Quintero D, et al. Control of the physical properties of anodic coatings obtained by plasma electrolytic oxidation on Ti6Al4V alloy. Surf. Coat. Technol. 2015;283:210–222. doi: 10.1016/j.surfcoat.2015.10.052. DOI
Henstock JR, Canham LT, Anderson SI. Silicon: the evolution of its use in biomaterials. ActaBiomater. 2015;11:17–26. doi: 10.1016/j.actbio.2014.09.025. PubMed DOI
Arslan E, Totik Y, Demirci EE, Efeoglu I. Wear and adhesion resistance of duplex coatings deposited on Ti6Al4V alloy using MAO and CFUBMS. Surf. Coat. Technol. 2013;214:1–7. doi: 10.1016/j.surfcoat.2012.10.006. DOI
Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999;122:73–93. doi: 10.1016/S0257-8972(99)00441-7. DOI
Curran JA, Clyne TW. Porosity in plasma electrolytic oxide coatings. Acta Mater. 2006;54:1985–1993. doi: 10.1016/j.actamat.2005.12.029. DOI
Zhang Y, et al. Micro-structures and growth mechanisms of plasma electrolytic oxidation coatings on aluminium at different current densities. Surf. Coat. Technol. 2017;321:236–246. doi: 10.1016/j.surfcoat.2017.04.064. DOI
Wang YM, Jiang BL, Lei TQ, Guo LX. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: microstructure, mechanical and tribological properties. Surf. Coat. Technol. 2006;201:82–89. doi: 10.1016/j.surfcoat.2005.10.044. DOI
Ma C, et al. Electrically polarized micro-arc oxidized TiO2 coatings with enhanced surface hydrophilicity. ActaBiomater. 2012;8:860–865. doi: 10.1016/j.actbio.2011.09.021. PubMed DOI
Cheng S, Wei D, Zhou Y, Guo H. Characterization and properties of microarc oxidized coatings containing Si, Ca and Na on titanium. Ceram. Int. 2011;37:1761–1768. doi: 10.1016/j.ceramint.2011.03.006. DOI
Muhaffel F, et al. Influence of alumina and zirconia incorporations on the structure and wear resistance of titania-based MAO coatings. Surf. Coat. Technol. 2019;377:124900. doi: 10.1016/j.surfcoat.2019.124900. DOI
Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI
Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Gentleman MM, Gentleman E. The role of surface free energy in osteoblast–biomaterial interactions. Int. Mater. Rev. 2014;59:417–429. doi: 10.1179/1743280414Y.0000000038. DOI
He J, et al. Theanatase phase of nanotopographytitania plays an important role on osteoblast cell morphology and proliferation. J. Mater. Sci. Mater. Med. 2008;19:3465–3472. doi: 10.1007/s10856-008-3505-3. PubMed DOI
Bačáková L, Švorčík V. Cell colonization control by physical and chemical modification of materials. In: Kimura D, editor. Cell Growth Processes: New Research. Hauppauge: Nova Biomedical Books; 2008.
Eisenbarth E, et al. Cell orientation and cytoskeleton organisation on ground titanium surfaces. Biomol. Eng. 2002;19:233–237. doi: 10.1016/S1389-0344(02)00028-X. PubMed DOI
Clem WC, et al. Mesenchymal stem cell interaction with ultra smooth nanostructured diamond for wear resistant orthopaedic implants. Biomaterials. 2008;29:3461–3468. doi: 10.1016/j.biomaterials.2008.04.045. PubMed DOI PMC
Bacakova L, et al. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides. J. Mater. Sci. Mater. Med. 2007;18:1317–1323. doi: 10.1007/s10856-006-0074-1. PubMed DOI
Nebe JGB, Luethen F, Lange R, Beck U. Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters. Macromol. Biosci. 2007;7:567–578. doi: 10.1002/mabi.200600293. PubMed DOI
Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29:970–983. doi: 10.1016/j.biomaterials.2007.11.009. PubMed DOI
Anselme K, Bigerelle M. On the relation between surface roughness of metallic substrates and adhesion of human primary bone cells: Relation surface roughness/cell adhesion. Scanning. 2014;36:11–20. doi: 10.1002/sca.21067. PubMed DOI
Nicolas-Silvente AI, et al. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials. 2020;13:314. doi: 10.3390/ma13020314. PubMed DOI PMC
Fernández-Tresguerres-Hernández-Gil, I., Alobera-Gracia, M. A., del-Canto-Pingarrón, M. & Blanco-Jerez, L. Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med. Oral Patol. Oral Cir. Bucal.11, E47–E51 (2006). PubMed
Setzer B, Bächle M, Metzger MC, Kohal RJ. The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials. 2009;30(979–990):2009. doi: 10.1016/j.biomaterials.2008.10.054. PubMed DOI
Tsao Y-T, et al. Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int .J. Mol .Sci. 2017;18:159. doi: 10.3390/ijms18010159. PubMed DOI PMC
Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–5082. doi: 10.1016/j.biomaterials.2010.03.014. PubMed DOI
Shokouhfar M, Allahkaram SR. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles. Surf. Coat. Technol. 2016;291:396–405. doi: 10.1016/j.surfcoat.2016.03.013. DOI
Shokouhfar M, Dehghanian C, Montazeri M, Baradaran A. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: part II. Appl. Surf. Sci. 2012;258:2416–2423. doi: 10.1016/j.apsusc.2010.10.032. DOI
Yerokhin AL, et al. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surf. Coat. Technol. 2005;199:150–157. doi: 10.1016/j.surfcoat.2004.10.147. DOI
Schultze JW, Lohrengel MM. Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim. Acta. 2000;45:2499–2513. doi: 10.1016/S0013-4686(00)00347-9. DOI
Ikonopisov S. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta. 1977;22:1077–1082. doi: 10.1016/0013-4686(77)80042-X. DOI
Jørgensen NR, Henriksen Z, Sørensen OH, Civitelli R. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids. 2004;69:219–226. doi: 10.1016/j.steroids.2003.12.005. PubMed DOI
Czekanska E, Stoddart M, Richards R, Hayes J. In search of an osteoblast cell model for in vitro research. Eur. Cells Mater. 2012;24:1–17. doi: 10.22203/eCM.v024a01. PubMed DOI
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Chlupac J, et al. The gene expression of human endothelial cells is modulated by subendothelial extracellular matrix proteins: short-term response to laminar shear stress. Tissue Eng. Part A. 2014;20:2253–2264. doi: 10.1089/ten.tea.2013.0153. PubMed DOI PMC
Filova E, et al. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings. J. Mater. Sci. Mater. Med. 2017;28:17. doi: 10.1007/s10856-016-5830-2. PubMed DOI