• This record comes from PubMed

Preparation of highly wettable coatings on Ti-6Al-4V ELI alloy for traumatological implants using micro-arc oxidation in an alkaline electrolyte

. 2020 Nov 13 ; 10 (1) : 19780. [epub] 20201113

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 33188241
PubMed Central PMC7666130
DOI 10.1038/s41598-020-76448-w
PII: 10.1038/s41598-020-76448-w
Knihovny.cz E-resources

Pulsed micro-arc oxidation (MAO) in a strongly alkaline electrolyte (pH > 13), consisting of Na2SiO3⋅9H2O and NaOH, was used to form a thin porous oxide coating consisting of two layers differing in chemical and phase composition. The unique procedure, combining MAO and removal of the outer layer by blasting, enables to prepare a coating suitable for application in temporary traumatological implants. A bilayer formed in an alkaline electrolyte environment during the application of MAO enables the formation of a wear-resistant layer with silicon incorporated in the oxide phase. Following the removal of the outer rutile-containing porous layer, the required coating properties for traumatological applications were determined. The prepared surfaces were characterized by scanning electron microscopy, X-ray diffraction patterns, X-ray photoelectron spectroscopy, atomic force microscopy and contact angle measurements. Cytocompatibility was evaluated using human osteoblast-like Saos-2 cells. The newly-developed surface modifications of Ti-6Al-4V ELI alloy performed satisfactorily in all cellular tests in comparison with MAO-untreated alloy and standard tissue culture plastic. High cell viability was supported, but the modifications allowed only relatively slow cell proliferation, and showed only moderate osseointegration potential without significant support for matrix mineralization. Materials with these properties are promising for utilization in temporary traumatological implants.

See more in PubMed

Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26:11–21. doi: 10.1016/j.biomaterials.2004.02.005. PubMed DOI

Zaffe D, Bertoldi C, Consolo U. Accumulation of aluminium in lamellar bone after implantation of titanium plates, Ti–6Al–4V screws, hydroxyapatite granules. Biomaterials. 2004;25:3837–3844. doi: 10.1016/j.biomaterials.2003.10.020. PubMed DOI

Zhong C, et al. Laser metal deposition of Ti6Al4V—a brief review. Appl. Sci. 2020;10:764. doi: 10.3390/app10030764. DOI

Shah FA, Trobos M, Thomsen P, Palmquist A. Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—Is one truly better than the other? Mater. Sci. Eng. C Mater. Biol. Appl. 2016;62:960–966. doi: 10.1016/j.msec.2016.01.032. PubMed DOI

Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004;47:49–121. doi: 10.1016/j.mser.2004.11.001. DOI

Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications. (Springer-Verlag, 2001). 10.1007/978-3-642-56486-4.

Kasemo B, Lausmaa J. Aspects of surface physics on titanium implants. Swed. Dent. J. Suppl. 1985;28:19–36. PubMed

Hanawa T. Metal ion release from metal implants. Mater. Sci. Eng. C. 2004;24:745–752. doi: 10.1016/j.msec.2004.08.018. DOI

Santos-Coquillat A, et al. Bioactive multi-elemental PEO-coatings on titanium for dental implant applications. Mater. Sci. Eng. C. 2019;97:738–752. doi: 10.1016/j.msec.2018.12.097. PubMed DOI

Wang YM, Jia DC, Guo LX, Lei TQ, Jiang BL. Effect of discharge pulsating on microarc oxidation coatings formed on Ti6Al4V alloy. Mater. Chem. Phys. 2005;90:128–133. doi: 10.1016/j.matchemphys.2004.10.025. DOI

Kaluđerović MR, Schreckenbach JP, Graf H-L. Titanium dental implant surfaces obtained by anodic spark deposition—from the past to the future. Mater. Sci. Eng. C. 2016;69:1429–1441. doi: 10.1016/j.msec.2016.07.068. PubMed DOI

Serruys Y, Sakout T, Gorse D. Anodic oxidation of titanium in 1M H2SO4, studied by Rutherford backscattering. Surf. Sci. 1993;282:279–287. doi: 10.1016/0039-6028(93)90934-C. DOI

Wilhelmsen W. Electron transfer reactions of vanadium (IV)/(V) on passive titanium. Electrochim. acta. 1988;33:1653–1660. doi: 10.1016/0013-4686(88)80238-X. DOI

Li L-H, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25:2867–2875. doi: 10.1016/j.biomaterials.2003.09.048. PubMed DOI

Oh H-J, Lee J-H, Jeong Y, Kim Y-J, Chi C-S. Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. Surf. Coat. Technol. 2005;198:247–252. doi: 10.1016/j.surfcoat.2004.10.029. DOI

Wang J, et al. Effect of electrolyte composition on the microstructure and bio-corrosion behavior of micro-arc oxidized coatings on biomedical Ti6Al4V alloy. J. Mater. Res. Technol. 2020;9:1477–1490. doi: 10.1016/j.jmrt.2019.11.073. DOI

Cimenoglu H, et al. Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications. Mater. Charact. 2011;62:304–311. doi: 10.1016/j.matchar.2011.01.002. DOI

Quintero D, et al. Control of the physical properties of anodic coatings obtained by plasma electrolytic oxidation on Ti6Al4V alloy. Surf. Coat. Technol. 2015;283:210–222. doi: 10.1016/j.surfcoat.2015.10.052. DOI

Henstock JR, Canham LT, Anderson SI. Silicon: the evolution of its use in biomaterials. ActaBiomater. 2015;11:17–26. doi: 10.1016/j.actbio.2014.09.025. PubMed DOI

Arslan E, Totik Y, Demirci EE, Efeoglu I. Wear and adhesion resistance of duplex coatings deposited on Ti6Al4V alloy using MAO and CFUBMS. Surf. Coat. Technol. 2013;214:1–7. doi: 10.1016/j.surfcoat.2012.10.006. DOI

Yerokhin AL, Nie X, Leyland A, Matthews A, Dowey SJ. Plasma electrolysis for surface engineering. Surf. Coat. Technol. 1999;122:73–93. doi: 10.1016/S0257-8972(99)00441-7. DOI

Curran JA, Clyne TW. Porosity in plasma electrolytic oxide coatings. Acta Mater. 2006;54:1985–1993. doi: 10.1016/j.actamat.2005.12.029. DOI

Zhang Y, et al. Micro-structures and growth mechanisms of plasma electrolytic oxidation coatings on aluminium at different current densities. Surf. Coat. Technol. 2017;321:236–246. doi: 10.1016/j.surfcoat.2017.04.064. DOI

Wang YM, Jiang BL, Lei TQ, Guo LX. Microarc oxidation coatings formed on Ti6Al4V in Na2SiO3 system solution: microstructure, mechanical and tribological properties. Surf. Coat. Technol. 2006;201:82–89. doi: 10.1016/j.surfcoat.2005.10.044. DOI

Ma C, et al. Electrically polarized micro-arc oxidized TiO2 coatings with enhanced surface hydrophilicity. ActaBiomater. 2012;8:860–865. doi: 10.1016/j.actbio.2011.09.021. PubMed DOI

Cheng S, Wei D, Zhou Y, Guo H. Characterization and properties of microarc oxidized coatings containing Si, Ca and Na on titanium. Ceram. Int. 2011;37:1761–1768. doi: 10.1016/j.ceramint.2011.03.006. DOI

Muhaffel F, et al. Influence of alumina and zirconia incorporations on the structure and wear resistance of titania-based MAO coatings. Surf. Coat. Technol. 2019;377:124900. doi: 10.1016/j.surfcoat.2019.124900. DOI

Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:667–681. doi: 10.1016/S0142-9612(99)00242-2. PubMed DOI

Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI

Gentleman MM, Gentleman E. The role of surface free energy in osteoblast–biomaterial interactions. Int. Mater. Rev. 2014;59:417–429. doi: 10.1179/1743280414Y.0000000038. DOI

He J, et al. Theanatase phase of nanotopographytitania plays an important role on osteoblast cell morphology and proliferation. J. Mater. Sci. Mater. Med. 2008;19:3465–3472. doi: 10.1007/s10856-008-3505-3. PubMed DOI

Bačáková L, Švorčík V. Cell colonization control by physical and chemical modification of materials. In: Kimura D, editor. Cell Growth Processes: New Research. Hauppauge: Nova Biomedical Books; 2008.

Eisenbarth E, et al. Cell orientation and cytoskeleton organisation on ground titanium surfaces. Biomol. Eng. 2002;19:233–237. doi: 10.1016/S1389-0344(02)00028-X. PubMed DOI

Clem WC, et al. Mesenchymal stem cell interaction with ultra smooth nanostructured diamond for wear resistant orthopaedic implants. Biomaterials. 2008;29:3461–3468. doi: 10.1016/j.biomaterials.2008.04.045. PubMed DOI PMC

Bacakova L, et al. Adhesion and growth of vascular smooth muscle cells in cultures on bioactive RGD peptide-carrying polylactides. J. Mater. Sci. Mater. Med. 2007;18:1317–1323. doi: 10.1007/s10856-006-0074-1. PubMed DOI

Nebe JGB, Luethen F, Lange R, Beck U. Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters. Macromol. Biosci. 2007;7:567–578. doi: 10.1002/mabi.200600293. PubMed DOI

Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29:970–983. doi: 10.1016/j.biomaterials.2007.11.009. PubMed DOI

Anselme K, Bigerelle M. On the relation between surface roughness of metallic substrates and adhesion of human primary bone cells: Relation surface roughness/cell adhesion. Scanning. 2014;36:11–20. doi: 10.1002/sca.21067. PubMed DOI

Nicolas-Silvente AI, et al. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials. 2020;13:314. doi: 10.3390/ma13020314. PubMed DOI PMC

Fernández-Tresguerres-Hernández-Gil, I., Alobera-Gracia, M. A., del-Canto-Pingarrón, M. & Blanco-Jerez, L. Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med. Oral Patol. Oral Cir. Bucal.11, E47–E51 (2006). PubMed

Setzer B, Bächle M, Metzger MC, Kohal RJ. The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials. 2009;30(979–990):2009. doi: 10.1016/j.biomaterials.2008.10.054. PubMed DOI

Tsao Y-T, et al. Osteocalcin mediates biomineralization during osteogenic maturation in human mesenchymal stromal cells. Int .J. Mol .Sci. 2017;18:159. doi: 10.3390/ijms18010159. PubMed DOI PMC

Zhao L, Mei S, Chu PK, Zhang Y, Wu Z. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions. Biomaterials. 2010;31:5072–5082. doi: 10.1016/j.biomaterials.2010.03.014. PubMed DOI

Shokouhfar M, Allahkaram SR. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles. Surf. Coat. Technol. 2016;291:396–405. doi: 10.1016/j.surfcoat.2016.03.013. DOI

Shokouhfar M, Dehghanian C, Montazeri M, Baradaran A. Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: part II. Appl. Surf. Sci. 2012;258:2416–2423. doi: 10.1016/j.apsusc.2010.10.032. DOI

Yerokhin AL, et al. Oxide ceramic coatings on aluminium alloys produced by a pulsed bipolar plasma electrolytic oxidation process. Surf. Coat. Technol. 2005;199:150–157. doi: 10.1016/j.surfcoat.2004.10.147. DOI

Schultze JW, Lohrengel MM. Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim. Acta. 2000;45:2499–2513. doi: 10.1016/S0013-4686(00)00347-9. DOI

Ikonopisov S. Theory of electrical breakdown during formation of barrier anodic films. Electrochim. Acta. 1977;22:1077–1082. doi: 10.1016/0013-4686(77)80042-X. DOI

Jørgensen NR, Henriksen Z, Sørensen OH, Civitelli R. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids. 2004;69:219–226. doi: 10.1016/j.steroids.2003.12.005. PubMed DOI

Czekanska E, Stoddart M, Richards R, Hayes J. In search of an osteoblast cell model for in vitro research. Eur. Cells Mater. 2012;24:1–17. doi: 10.22203/eCM.v024a01. PubMed DOI

Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Chlupac J, et al. The gene expression of human endothelial cells is modulated by subendothelial extracellular matrix proteins: short-term response to laminar shear stress. Tissue Eng. Part A. 2014;20:2253–2264. doi: 10.1089/ten.tea.2013.0153. PubMed DOI PMC

Filova E, et al. Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings. J. Mater. Sci. Mater. Med. 2017;28:17. doi: 10.1007/s10856-016-5830-2. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...