Adhesion and differentiation of Saos-2 osteoblast-like cells on chromium-doped diamond-like carbon coatings
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28000113
DOI
10.1007/s10856-016-5830-2
PII: 10.1007/s10856-016-5830-2
Knihovny.cz E-zdroje
- MeSH
- alkalická fosfatasa metabolismus MeSH
- biokompatibilní potahované materiály MeSH
- buněčná adheze * MeSH
- buněčná diferenciace * MeSH
- buněčné linie MeSH
- chrom chemie MeSH
- diamant chemie MeSH
- fokální adheze MeSH
- kolagen typu I metabolismus MeSH
- kovy chemie MeSH
- lasery MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- osteoblasty cytologie MeSH
- osteogeneze MeSH
- povrchové vlastnosti MeSH
- stanovení celkové genové exprese MeSH
- talin chemie MeSH
- uhlík chemie MeSH
- vinkulin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkalická fosfatasa MeSH
- biokompatibilní potahované materiály MeSH
- chrom MeSH
- diamant MeSH
- kolagen typu I MeSH
- kovy MeSH
- messenger RNA MeSH
- talin MeSH
- uhlík MeSH
- vinkulin MeSH
Diamond-like carbon (DLC) thin films are promising for use in coating orthopaedic, dental and cardiovascular implants. The problem of DLC layers lies in their weak layer adhesion to metal implants. Chromium is used as a dopant for improving the adhesion of DLC films. Cr-DLC layers were prepared by a hybrid technology, using a combination of pulsed laser deposition (PLD) from a graphite target and magnetron sputtering. Depending on the deposition conditions, the concentration of Cr in the DLC layers moved from zero to 10.0 at.%. The effect of DLC layers with 0.0, 0.9, 1.8, 7.3, 7.7 and 10.0 at.% Cr content on the adhesion and osteogenic differentiation of human osteoblast-like Saos-2 cells was assessed in vitro. The DLC samples that contained 7.7 and 10.0 at.% of Cr supported cell spreading on day 1 after seeding. On day three after seeding, the most apparent vinculin-containing focal adhesion plaques were also found on samples with higher concentrations of chromium. On the other hand, the expression of type I collagen and alkaline phosphatase at the mRNA and protein level was the highest on Cr-DLC samples with a lower concentration of Cr (0-1.8 at.%). We can conclude that higher concentrations of chromium supported cell adhesion; however DLC and DLC doped with a lower concentration of chromium supported osteogenic cell differentiation.
Zobrazit více v PubMed
Regul Toxicol Pharmacol. 2014 Mar;68(2):201-11 PubMed
Mater Sci Eng C Mater Biol Appl. 2016 Jan 1;58:1217-24 PubMed
J Biomed Mater Res A. 2010 Nov;95(2):388-400 PubMed
J Biomed Mater Res A. 2016 Oct;104(10):2502-14 PubMed
J Cell Biochem. 2002;85(4):737-46 PubMed
J Bone Joint Surg Br. 1997 May;79(3):475-82 PubMed
Eur Cell Mater. 2009 Oct 23;18:49-60, 61-2; discussion 60 PubMed
Toxicol In Vitro. 2014 Jun;28(4):700-6 PubMed
J Biomed Mater Res A. 2006 Jan;76(1):86-94 PubMed
Biomaterials. 2007 Mar;28(9):1620-8 PubMed
Eur Cell Mater. 2012 Jul 09;24:1-17 PubMed
Arch Physiol Biochem. 2007 Jun;113(3):154-61 PubMed
Eur J Oral Sci. 2006 May;114 Suppl 1:205-11; discussion 254-6, 381-2 PubMed
Acta Biomater. 2009 Oct;5(8):3076-85 PubMed
Colloids Surf B Biointerfaces. 2008 Feb 15;61(2):182-7 PubMed
Mol Carcinog. 2010 Jun;49(6):582-91 PubMed
Indian J Med Res. 2014 Mar;139(3):349-70 PubMed
Crit Rev Toxicol. 1997 Sep;27(5):431-42 PubMed
Alcohol Clin Exp Res. 2004 Mar;28(3):468-79 PubMed
Clin Chem. 2009 Apr;55(4):611-22 PubMed
Am J Physiol Cell Physiol. 2015 Jan 15;308(2):C111-22 PubMed
Biomed Res Int. 2015;2015:171945 PubMed
J Biomed Mater Res A. 2012 Feb;100(2):496-506 PubMed
J Biomed Mater Res B Appl Biomater. 2007 Oct;83(1):72-84 PubMed
PLoS One. 2011 Mar 18;6(3):e17982 PubMed
J Biomater Sci Polym Ed. 2001;12(7):817-34 PubMed
Woodhead Publ Ser Biomater. 2013;2013:105-150 PubMed
Acta Biomater. 2011 Dec;7(12):4210-21 PubMed
Mol Cell Biochem. 2005 Nov;279(1-2):169-81 PubMed
J Biomater Sci Polym Ed. 1991;2(2):147-59 PubMed
Acta Biomater. 2015 Jan;11:494-502 PubMed
Int J Nanomedicine. 2015 Nov 20;10:7145-63 PubMed
Nature. 2010 Apr 15;464(7291):1058-61 PubMed
Mater Sci Eng C Mater Biol Appl. 2015 Jan;46:381-6 PubMed
Proc R Soc Lond B Biol Sci. 1976 Jan 20;192(1107):163-72 PubMed
J Biomed Mater Res A. 2012 Apr;100(4):1016-32 PubMed
Biotechnol Adv. 2011 Nov-Dec;29(6):739-67 PubMed
Clin Mater. 1994;17(1):1-10 PubMed
BMJ. 2005 Oct 15;331(7521):903 PubMed
Open Orthop J. 2008 Mar 26;2:43-50 PubMed
Cell. 2002 Jan 11;108(1):17-29 PubMed
Acta Biomater. 2008 Sep;4(5):1369-81 PubMed
Adv Exp Med Biol. 2010;658:43-9 PubMed
J Biomed Mater Res. 2001 May 1;58(3):319-28 PubMed