Potential Diagnostic and Clinical Significance of Selected Genetic Alterations in Glioblastoma

. 2024 Apr 18 ; 25 (8) : . [epub] 20240418

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38674026

Grantová podpora
MH CZ - DRO - FNOs/2023 Ministry of Health Czech Republic

Glioblastoma is currently considered the most common and, unfortunately, also the most aggressive primary brain tumor, with the highest morbidity and mortality rates. The average survival of patients diagnosed with glioblastoma is 14 months, and only 2% of patients survive 3 years after surgery. Based on our clinical experience and knowledge from extensive clinical studies, survival is mainly related to the molecular biological properties of glioblastoma, which are of interest to the general medical community. Our study examined a total of 71 retrospective studies published from 2016 through 2022 and available on PubMed that deal with mutations of selected genes in the pathophysiology of GBM. In conclusion, we can find other mutations within a given gene group that have different effects on the prognosis and quality of survival of a patient with glioblastoma. These mutations, together with the associated mutations of other genes, as well as intratumoral heterogeneity itself, offer enormous potential for further clinical research and possible application in therapeutic practice.

Zobrazit více v PubMed

Dubrow R., Darefsky A.S. Demographic variation in incidence of adult glioma by subtype, United States, 1992–2007. BMC Cancer. 2011;11:325. doi: 10.1186/1471-2407-11-325. PubMed DOI PMC

Krex D., Klink B., Hartmann C., von Deimling A., Pietsch T., Simon M., Sabel M., Steinbach J.P., Heese O., Reifenberger G., et al. Long-term survival with glioblastoma multiforme. Pt 10Brain. 2007;130:2596–2606. doi: 10.1093/brain/awm204. PubMed DOI

Zacher A., Kaulich K., Stepanow S., Wolter M., Köhrer K., Felsberg J., Malzkorn B., Reifenberger G. Molecular Diagnostics of Gliomas Using Next Generation Sequencing of a Glioma-Tailored Gene Panel. Brain Pathol. 2017;27:146–159. doi: 10.1111/bpa.12367. PubMed DOI PMC

WHO Classification of Tumours Editorial Board, editor. WHO Classification of Tumours. 5th ed. International Agency for Research on Cancer; Lyon, France: 2021. Central nervous system tumours.568p.

Panigrahi A.R., Pinder S.E., Chan S.Y., Paish E.C., Robertson J.F., Ellis I.O. The role of PTEN and its signalling pathways, including AKT, in breast cancer; an assessment of relationships with other prognostic factors and with outcome. J. Pathol. 2004;204:93–100. doi: 10.1002/path.1611. PubMed DOI

Wang H., Guo M., Wei H., Chen Y. Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Nat. Singal Tranduct. Target. Ther. 2023;8:92. doi: 10.1038/s41392-023-01347-1. PubMed DOI PMC

Wee P., Wang Z. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways. Cancers. 2017;9:52. doi: 10.3390/cancers9050052. PubMed DOI PMC

Peng Y., Wang Y., Zhou C., Mei W., Zeng C. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front. Oncol. 2022;12:819128. doi: 10.3389/fonc.2022.819128. PubMed DOI PMC

Takahashi Y., Akahane T., Sawada T., Ikeda H., Tempaku A., Yamauchi S., Nishihara H., Tanaka S., Nitta K., Ide W., et al. Adult classical glioblastoma with a BRAF V600E mutation. World J. Surg. Oncol. 2015;13:100. doi: 10.1186/s12957-015-0521-x. PubMed DOI PMC

Stayton C.L., Dabovic B., Gulisano M., Gecz J., Broccoll V., Glovanazzl S., Bossolasco M., Monaco L., Rastan S., BoncInelli E., et al. Cloning and characterization of a new human Xq13 gene, encoding a putative helicase. Hum. Mol. Genet. 1994;3:1957–1964. doi: 10.1093/hmg/3.11.1957. PubMed DOI

Gibbons R.J., Wada T., Fisher C.A., Malik N., Mitson M.J., Steensma D.P., Fryer A., Goudie D.R., Krantz I.D., Traeger-Synodinos J. Mutations in the chromatin-associated protein ATRX. Hum. Mutat. 2008;29:796–802. doi: 10.1002/humu.20734. PubMed DOI

Wong L.H., McGhie J.D., Sim M., Anderson M.A., Ahn S., Hannan R.D., George A.J., Morgan K.A., Mann J.R., Choo K.A. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res. 2010;20:351–360. doi: 10.1101/gr.101477.109. PubMed DOI PMC

Heaphy C.M., de Wilde R.F., Jiao Y., Klein A.P., Edil B.H., Shi C., Bettegowda C., Rodriguez F.J., Eberhart C.G., Hebbar S., et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333:425. doi: 10.1126/science.1207313. PubMed DOI PMC

Pekmezci M., Rice T., Molinaro A.M., Walsh K.M., Decker P.A., Hansen H., Sicotte H., Kollmeyer T.M., McCoy L.S., Sarkar G., et al. Adult infiltrating gliomas with WHO 2016 integrated diagnosis: Additional prognostic roles of ATRX and TERT. Acta Neuropathol. 2017;133:1001–1016. doi: 10.1007/s00401-017-1690-1. PubMed DOI PMC

Han B., Cai J., Gao W., Meng X., Gao F., Wu P., Duan C., Wang R., Dinislam M., Lin L., et al. Loss of ATRX suppresses ATM dependent DNA damage repair by modulating H3K9me3 to enhance temozolomide sensitivity in glioma. Cancer Lett. 2018;419:280–290. doi: 10.1016/j.canlet.2018.01.056. PubMed DOI

Ohba S., Kuwahara K., Yamada S., Abe M., Hirose Y. Correlation between IDH, ATRX, and TERT promoter mutations in glioma. Brain Tumor Pathol. 2020;37:33–40. doi: 10.1007/s10014-020-00360-4. PubMed DOI

Alhendi A.S.N. Ph.D. Thesis. University of Leicester; Leicester, UK: 2019. [(accessed on 16 April 2019)]. Exploring the Regulation and Activation of ALT, the Alternative Lengthening of Telomeres. Available online: https://hdl.handle.net/2381/43806.

Liu J., Zhang X., Yan X., Sun M., Fan Y., Huang Y. Significance of TERT and ATRX mutations in glioma. Oncol. Lett. 2019;17:95–102. doi: 10.3892/ol.2018.9634. PubMed DOI PMC

Yuzawa S., Kamikokura Y., Tanino M., Takei H. Malignant transformation of NF1-associated spinal astrocytoma with loss of ATRX expression during the course: A case report. Clin. Neuropathol. 2021;40:201–208. doi: 10.5414/NP301314. PubMed DOI

Bobeff E.J., Szczesna D., Bieńkowski M., Janczar K., Chmielewska-Kassassir M., Wiśniewski K., Papierz W., Wozniak L.A., Jaskólski D.J. Plasma amino acids indicate glioblastoma with ATRX loss. Amino Acids. 2021;53:119–132. doi: 10.1007/s00726-020-02931-3. PubMed DOI

Gülten G., Yalçın N., Baltalarlı B., Doğu G., Acar F., Doğruel Y. The importance of IDH1, ATRX and WT-1 mutations in glioblastoma. Pol. J. Pathol. 2020;71:127–137. doi: 10.5114/pjp.2020.97020. PubMed DOI

Chaurasia A., Park S.H., Seo J.W., Park C.K. Immunohistochemical Analysis of ATRX, IDH1 and p53 in Glioblastoma and Their Correlations with Patient Survival. J. Korean Med. Sci. 2016;31:1208–1214. doi: 10.3346/jkms.2016.31.8.1208. PubMed DOI PMC

Ikemura M., Shibahara J., Mukasa A., Takayanagi S., Aihara K., Saito N., Aburatani H., Fukayama M. Utility of ATRX immunohistochemistry in diagnosis of adult diffuse gliomas. Histopathology. 2016;69:260–267. doi: 10.1111/his.12927. PubMed DOI

Uppar A.M., Sugur H., Prabhuraj A.R., Rao M.B., Devi B.I., Sampath S., Arivazhagan A., Santosh V. H3K27M, IDH1, and ATRX expression in pediatric GBM and their clinical and prognostic significance. Childs Nerv. Syst. 2019;35:1537–1545. doi: 10.1007/s00381-019-04222-z. PubMed DOI

Cai H.-Q., Wang P.-F., Zhang H.-P., Cheng Z.-J., Li S.-W., He J., Zhang Y., Hao J.-J., Wang M.-R., Yan C.-X., et al. Phosphorylated Hsp27 is mutually exclusive with ATRX loss and the IDH1R132H mutation and may predict better prognosis among glioblastomas without the IDH1 mutation and ATRX loss. J. Clin. Pathol. 2018;71:702–707. doi: 10.1136/jclinpath-2018-205000. PubMed DOI PMC

Sithanandam G., Druck T., Cannizzaro L.A., Leuzzi G., Huebner K., Rapp U.R. B-raf and a B-raf pseudogene are located on 7q in man. Oncogene. 1992;7:795–799. PubMed

Haparátová E. Maligní melanom s BRAF mutací a možnosti jeho léčby. Klin. Farmakol. 2015;29:65–68.

Kleinschmidt-DeMasters B.K., Aisner D.L., Foreman N.K. BRAF VE1 immunoreactivity patterns in epithelioid glioblastomas positive for BRAF V600E mutation. Am. J. Surg. Pathol. 2015;39:528–540. doi: 10.1097/PAS.0000000000000363. PubMed DOI PMC

Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–954. doi: 10.1038/nature00766. PubMed DOI

Zheng L.M., Gong J., Zou Y., Zhang M., Yu T., Hou J., Zhou Q., Chen N. Epithelioid glioblastoma with BRAF V600E mutation: A clinicopathological and molecular study. Chin. J. Pathol. 2021;50:229–235. PubMed

Vuong H.G., Altibi A.M.A., Duong U.N.P., Ngo H.T.T., Pham T.Q., Fung K.-M., Hassell L. BRAF Mutation is Associated with an Improved Survival in Glioma-a Systematic Review and Meta-analysis. Mol. Neurobiol. 2018;55:3718–3724. doi: 10.1007/s12035-017-0599-y. PubMed DOI

Chi A.S., Batchelor T.T., Yang D., Dias-Santagata D., Borger D.R., Ellisen L.W., Iafrate A.J., Louis D.N. BRAF V600E mutation identifies a subset of low-grade diffusely infiltrating gliomas in adults. J. Clin. Oncol. 2013;31:e233–e236. doi: 10.1200/JCO.2012.46.0220. PubMed DOI

Da R., Wang M., Jiang H., Wang T., Wang W. BRAFAMP Frequently Co-occurs with IDH1/2, TP53, and ATRX Mutations in Adult Patients with Gliomas and Is Associated with Poorer Survival Than That of Patients Harboring BRAFV600E. Front. Oncol. 2021;10:531968. doi: 10.3389/fonc.2020.531968. PubMed DOI PMC

Wang J., Liu Z., Cui Y., Liu Y., Fang J., Xu L., He Y., Du J., Su Y., Zou W., et al. Evaluation of EZH2 expression, BRAF V600E mutation, and CDKN2A/B deletions in epithelioid glioblastoma and anaplastic pleomorphic xanthoastrocytoma. J. Neurooncol. 2019;144:137–146. doi: 10.1007/s11060-019-03212-0. PubMed DOI

Herbst R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 2004;59((Suppl. S2)):21–26. doi: 10.1016/j.ijrobp.2003.11.041. PubMed DOI

Kenney N.J., Bowman A., Korach K.S., Barrett J.C., Salomon D.S. Effect of exogenous epidermal-like growth factors on mammary gland development and differentiation in the estrogen receptor-alpha knockout (ERKO) mouse. Breast Cancer Res. Treat. 2003;79:161–173. doi: 10.1023/A:1023938510508. PubMed DOI

Zhang H., Berezov A., Wang Q., Zhang G., Drebin J., Murali R., Greene M.I. ErbB receptors: From oncogenes to targeted cancer therapies. J. Clin. Investig. 2007;117:2051–2058. doi: 10.1172/JCI32278. PubMed DOI PMC

Kuan C.T., Wikstrand C.J., Bigner D.D. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr. Relat. Cancer. 2001;8:83–96. doi: 10.1677/erc.0.0080083. PubMed DOI

An Z., Aksoy O., Zheng T., Fan Q.W., Weiss W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene. 2018;37:1561–1575. doi: 10.1038/s41388-017-0045-7. PubMed DOI PMC

Matini A.H., Mofidi Naeini M., Haddad Kashani H., Vakili Z. Evaluation of Nestin and EGFR in Patients with Glioblastoma Multiforme in a Public Hospital in Iran. Asian Pac. J. Cancer Prev. 2020;21:2889–2894. doi: 10.31557/APJCP.2020.21.10.2889. PubMed DOI PMC

Navarro L., San-Miguel T., Megías J., Santonja N., Calabuig S., Muñoz-Hidalgo L., Roldán P., Cerdá-Nicolás M., López-Ginés C. Identification of New Genetic Clusters in Glioblastoma Multiforme: EGFR Status and ADD3 Losses Influence Prognosis. Cells. 2020;9:2429. doi: 10.3390/cells9112429. PubMed DOI PMC

Armocida D., Pesce A., Frati A., Santoro A., Salvati M. EGFR amplification is a real independent prognostic impact factor between young adults and adults over 45yo with wild-type glioblastoma? J. Neurooncol. 2020;146:275–284. doi: 10.1007/s11060-019-03364-z. PubMed DOI

Muñoz-Hidalgo L., San-Miguel T., Megías J., Monleón D., Navarro L., Roldán P., Cerdá-Nicolás M., López-Ginés C. Somatic copy number alterations are associated with EGFR amplification and shortened survival in patients with primary glioblastoma. Neoplasia. 2020;22:10–21. doi: 10.1016/j.neo.2019.09.001. PubMed DOI PMC

Schaff L.R., Yan D., Thyparambil S., Tian Y., Cecchi F., Rosenblum M., Reiner A.S., Panageas K.S., Hembrough T., Lin A.L. Characterization of MGMT and EGFR protein expression in glioblastoma and association with survival. J. Neurooncol. 2020;146:163–170. doi: 10.1007/s11060-019-03358-x. PubMed DOI PMC

Weller M., Butowski N., Tran D.D., Recht L.D., Lim M., Hirte H., Ashby L., Mechtler L., Goldlust S.A., Iwamoto F., et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18:1373–1385. doi: 10.1016/S1470-2045(17)30517-X. PubMed DOI

Guo C., Pirozzi C.J., Lopez G.Y., Yan H. Isocitrate dehydrogenase mutations in gliomas: Mechanisms, biomarkers and therapeutic target. Curr. Opin. Neurol. 2011;24:648–652. doi: 10.1097/WCO.0b013e32834cd415. PubMed DOI PMC

Xu X., Zhao J., Xu Z., Peng B., Huang Q., Arnold E., Ding J. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity. J. Biol. Chem. 2004;279:33946–33957. doi: 10.1074/jbc.M404298200. PubMed DOI

Dimitrov L., Hong C.S., Yang C., Zhuang Z., Heiss J.D. New developments in the pathogenesis and therapeutic targeting of the IDH1 mutation in glioma. Int. J. Med. Sci. 2015;12:201–213. doi: 10.7150/ijms.11047. PubMed DOI PMC

Kirollos R.W., Helmy A., Thomson S., Hutchinson P.J.A. Oxford Textbook of Neurological Surgery. Oxford University Press; Oxford, UK: 2020. 1148p.

Bascur J.P., Alegria-Arcos M., Araya-Duran I., Juritz E., Gonzalez-Nilo F.D., Almonacid D. IDH1 and IDH2 Mutants Identified in Cancer Lose Inhibition by Isocitrate Because of a Change in Their Binding Sites. 2018. [(accessed on 2 May 2019)]. Available online: https://www.biorxiv.org/content/10.1101/425025v2.full.pdf+html. DOI

Liu X., Ling Z.Q. Role of isocitrate dehydrogenase 1/2 (IDH 1/2) gene mutations in human tumors. Histol. Histopathol. 2015;30:1155–1160. doi: 10.14670/HH-11-643. PubMed DOI

Molenaar R.J., Radivoyevitch T., Maciejewski J.P., van Noorden C.J., Bleeker F.E. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim. Biophys. Acta. 2014;1846:326–341. doi: 10.1016/j.bbcan.2014.05.004. PubMed DOI

Kaiser R. Chirurgie Hlavových a Periferních Nervů s Atlasem Přístupů. Grada; Praha, Czech Republic: 2016. 232p.

Polívka J., Jr., Pešta M., Pitule P., Hes O., Holubec L., Kubíková T., Tonar Z. IDH1 mutation is associated with lower expression of VEGF but not microvessel formation in glioblastoma multiforme. Oncotarget. 2018;9:16462–16476. doi: 10.18632/oncotarget.24536. PubMed DOI PMC

Chen N., Yu T., Gong J., Nie L., Chen X., Zhang M., Xu M., Tan J., Su Z., Zhong J., et al. IDH1/2 gene hotspot mutations in central nervous system tumours: Analysis of 922 Chinese patients. Pathology. 2016;48:675–683. doi: 10.1016/j.pathol.2016.07.010. PubMed DOI

Lasocki A., Gaillard F., Tacey M., Drummond K., Stuckey S. Morphologic patterns of noncontrast-enhancing tumor in glioblastoma correlate with IDH1 mutation status and patient survival. J. Clin. Neurosci. 2018;47:168–173. doi: 10.1016/j.jocn.2017.09.007. PubMed DOI

Goryaynov S.A., Gol’dberg M.F., Golanov A.V., Zolotova S.V., Shishkina L.V., Ryzhova M.V., Pitskhelauri D.I., Zhukov V.Y., Usachev D.Y., Belyaev A.Y., et al. Fenomen dlitel’noĭ vyzhivaemosti patsientov s glioblastomami. Chast’ I: Rol’ kliniko-demograficheskikh faktorov i mutatsii IDH1 (R 132 H) [The phenomenon of long-term survival in glioblastoma patients. Part I: The role of clinical and demographic factors and an IDH1 mutation (R 132 H)] Zh Vopr. Neirokhir Im. N. N. Burdenko. 2017;81:5–16. doi: 10.17116/neiro20178135-16. PubMed DOI

Paldor I., Drummond K.J., Kaye A.H. IDH1 mutation may not be prognostically favorable in glioblastoma when controlled for tumor location: A case-control study. J. Clin. Neurosci. 2016;34:117–120. doi: 10.1016/j.jocn.2016.05.016. PubMed DOI

July J., Patricia D., Gunawan P.Y., Setiajaya H., Ginting T.E., Putra T.P., Wuisan Z., Budhiarko D., Masykura N., Prayogi G., et al. Clinicopathological associations and prognostic values of IDH1 gene mutation, MGMT gene promoter methylation, and PD-L1 expressions in high-grade glioma treated with standard treatment. Pan Afr. Med. J. 2020;36:309. doi: 10.11604/pamj.2020.36.309.24831. PubMed DOI PMC

Šlampa P. Gliomy Současná Diagnostika a Léčba; 2013; 191p. ISBN: 978-80-7345-321-3. [(accessed on 3 March 2024)]. Available online: https://webview.isho.jp/openurl?rft.genre=article&rft.issn=0301-2603&rft.volume=40&rft.issue=2&rft.spage=129.

Millward C.P., Brodbelt A.R., Haylock B., Zakaria R., Baborie A., Crooks D., Husband D., Shenoy A., Wong H., Jenkinson M.D. The impact of MGMT methylation and IDH-1 mutation on long-term outcome for glioblastoma treated with chemoradiotherapy. Acta Neurochir. 2016;158:1943–1953. doi: 10.1007/s00701-016-2928-8. PubMed DOI

Myung J.K., Cho H.J., Kim H., Park C.-K., Lee S.H., Choi S.H., Park P., Yoon J.M., Park S.-H. Prognosis of Glioblastoma with Oligodendroglioma Component is Associated with the IDH1 Mutation and MGMT Methylation Status. Transl. Oncol. 2014;7:712–719. doi: 10.1016/j.tranon.2014.10.002. PubMed DOI PMC

Boots-Sprenger S.H., Sijben A., Rijntjes J., Tops B.B.J., Idema A.J., Rivera A.L., E Bleeker F., Gijtenbeek A.M., Diefes K., Heathcock L., et al. Significance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: Use with caution. Mod. Pathol. 2013;26:922–929. doi: 10.1038/modpathol.2012.166. PubMed DOI

Kamoshima Y., Motegi H., Terasaka S., Kobayashi H., Yamaguchi S., Murata J., Tanaka S., Houkin K. Analyses of IDH1 mutation and MGMT promoter methylation status for 5 cases of long-term survivors with glioblastoma. No Shinkei Geka. 2012;40:129–135. PubMed

Wang K., Wang Y.-Y., Ma J., Wang J.-F., Li S.-W., Jiang T., Dai J.-P. Prognostic value of MGMT promoter methylation and TP53 mutation in glioblastomas depends on IDH1 mutation. Asian Pac. J. Cancer Prev. 2014;15:10893–10898. doi: 10.7314/APJCP.2014.15.24.10893. PubMed DOI

Yang P., Zhang W., Wang Y., Peng X., Chen B., Qiu X., Li G., Li S., Wu C., Yao K., et al. IDH mutation and MGMT promoter methylation in glioblastoma: Results of a prospective registry. Oncotarget. 2015;6:40896–40906. doi: 10.18632/oncotarget.5683. PubMed DOI PMC

Nguyen H.N., Lie A., Li T., Chowdhury R., Liu F., Ozer B., Wei B., Green R.M., Ellingson B.M., Wang H.-J., et al. Human TERT promoter mutation enables survival advantage from MGMT promoter methylation in IDH1 wild-type primary glioblastoma treated by standard chemoradiotherapy. Neuro Oncol. 2017;19:394–404. doi: 10.1093/neuonc/now189. PubMed DOI PMC

Ayoub Z., Geara F., Najjar M., Comair Y., Khoueiry-Zgheib N., Khoueiry P., Mahfouz R., Boulos F.I., Kamar F.G., Andraos T., et al. Prognostic significance of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation and isocitrate dehydrogenase-1 (IDH-1) mutation in glioblastoma multiforme patients: A single-center experience in the Middle East region. Clin. Neurol. Neurosurg. 2019;182:92–97. doi: 10.1016/j.clineuro.2019.04.008. PubMed DOI

Malmström A., Grønberg B.H., Marosi C., Stupp R., Frappaz D., Schultz H., Abacioglu U., Tavelin B., Lhermitte B., E Hegi M., et al. Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: The Nordic randomised, phase 3 trial. Lancet Oncol. 2012;13:916–926. doi: 10.1016/S1470-2045(12)70265-6. PubMed DOI

van den Bent M.J., Dubbink H.J., Sanson M., Van Der Lee-Haarloo C.R., Hegi M., Jeuken J.W., Ibdaih A., Brandes A.A., Taphoorn M.J., Frenay M., et al. MGMT promoter methylation is prognostic but not predictive for outcome to adjuvant PCV chemotherapy in anaplastic oligodendroglial tumors: A report from EORTC Brain Tumor Group Study 26951. J. Clin. Oncol. 2009;27:5881–5886. doi: 10.1200/JCO.2009.24.1034. PubMed DOI PMC

Li H., Li J., Cheng G., Zhang J., Li X. IDH mutation and MGMT promoter methylation are associated with the pseudoprogression and improved prognosis of glioblastoma multiforme patients who have undergone concurrent and adjuvant temozolomide-based chemoradiotherapy. Clin. Neurol. Neurosurg. 2016;151:31–36. doi: 10.1016/j.clineuro.2016.10.004. PubMed DOI

Arita H., Yamasaki K., Matsushita Y., Nakamura T., Shimokawa A., Takami H., Tanaka S., Mukasa A., Shirahata M., Shimizu S., et al. A combination of TERT promoter mutation and MGMT methylation status predicts clinically relevant subgroups of newly diagnosed glioblastomas. Acta Neuropathol. Commun. 2016;4:79. doi: 10.1186/s40478-016-0351-2. PubMed DOI PMC

Vuong H.G., Nguyen T.Q., Ngo T.N.M., Nguyen H.C., Fung K.M., Dunn I.F. The interaction between TERT promoter mutation and MGMT promoter methylation on overall survival of glioma patients: A meta-analysis. BMC Cancer. 2020;20:897. doi: 10.1186/s12885-020-07364-5. PubMed DOI PMC

Shu C., Wang Q., Yan X., Wang J. The TERT promoter mutation status and MGMT promoter methylation status, combined with dichotomized MRI-derived and clinical features, predict adult primary glioblastoma survival. Cancer Med. 2018;7:3704–3712. doi: 10.1002/cam4.1666. PubMed DOI PMC

Ligresti G., Militello L., Steelman L.S., Cavallaro A., Basile F., Nicoletti F., Stivala F., McCubrey J.A., Libra M. PIK3CA mutations in human solid tumors: Role in sensitivity to various therapeutic approaches. Cell Cycle. 2009;8:1352–1358. doi: 10.4161/cc.8.9.8255. PubMed DOI PMC

Gallia G.L., Rand V., Siu I.-M., Eberhart C.G., James C.D., Marie S.K., Oba-Shinjo S.M., Carlotti C.G., Caballero O.L., Simpson A.J., et al. PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol. Cancer Res. 2006;4:709–714. doi: 10.1158/1541-7786.MCR-06-0172. PubMed DOI

McNeill R.S., Stroobant E.E., Smithberger E., Canoutas D.A., Butler M.K., Shelton A.K., Patel S.D., Limas J.C., Skinner K.R., Bash R.E., et al. PIK3CA missense mutations promote glioblastoma pathogenesis, but do not enhance targeted PI3K inhibition. PLoS ONE. 2018;13:e0200014. doi: 10.1371/journal.pone.0200014. PubMed DOI PMC

Tanaka S., Batchelor T.T., Iafrate A.J., Dias-Santagata D., Borger D.R., Ellisen L.W., Yang D., Louis D.N., Cahill D.P., Chi A.S. PIK3CA activating mutations are associated with more disseminated disease at presentation and earlier recurrence in glioblastoma. Acta Neuropathol. Commun. 2019;7:66. doi: 10.1186/s40478-019-0720-8. PubMed DOI PMC

Quayle S.N., Lee J.Y., Cheung L.W.T., Ding L., Wiedemeyer R., Dewan R.W., Huang-Hobbs E., Zhuang L., Wilson R.K., Ligon K.L., et al. Somatic mutations of PIK3R1 promote gliomagenesis. PLoS ONE. 2012;7:e49466. doi: 10.1371/journal.pone.0049466. PubMed DOI PMC

Weber G.L., Parat M.O., Binder Z.A., Gallia G.L., Riggins G.J. Abrogation of PIK3CA or PIK3R1 reduces proliferation, migration, and invasion in glioblastoma multiforme cells. Oncotarget. 2011;2:833–849. doi: 10.18632/oncotarget.346. PubMed DOI PMC

Chu E.C., Tarnawski A.S. PTEN regulatory functions in tumor suppression and cell biology. Med. Sci. Monit. 2004;10:RA235–RA241. PubMed

Koshiyama D.B., Trevisan P., Graziadio C., Rosa R.F.M., Cunegatto B., Scholl J., Provenzi V.O., de Sá A.P., Soares F.P., Velho M.C., et al. Frequency and clinical significance of chromosome 7 and 10 aneuploidies, amplification of the EGFR gene, deletion of PTEN and TP53 genes, and 1p/19q deficiency in a sample of adult patients diagnosed with glioblastoma from Southern Brazil. J. Neurooncol. 2017;135:465–472. doi: 10.1007/s11060-017-2606-6. PubMed DOI

Xu J., Li Z., Wang J., Chen H., Fang J.Y. Combined PTEN Mutation and Protein Expression Associate with Overall and Disease-Free Survival of Glioblastoma Patients. Transl. Oncol. 2014;7:196–205.e1. doi: 10.1016/j.tranon.2014.02.004. PubMed DOI PMC

Carico C., Nuño M., Mukherjee D., Elramsisy A., Dantis J., Hu J., Rudnick J., Yu J.S., Black K.L., Bannykh S.I., et al. Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era. PLoS ONE. 2012;7:e33684. doi: 10.1371/journal.pone.0033684. PubMed DOI PMC

Kraus J.A., Glesmann N., Beck M., Krex D., Klockgether T., Schackert G., Schlegel U. Molecular analysis of the PTEN, TP53 and CDKN2A tumor suppressor genes in long-term survivors of glioblastoma multiforme. J. Neurooncol. 2000;48:89–94. doi: 10.1023/A:1006402614838. PubMed DOI

Tadipatri R., Lyon K., Azadi A., Fonkem E. A view of the epidemiologic landscape: How population-based studies can lend novel insights regarding the pathophysiology of glioblastoma. Chin. Clin. Oncol. 2021;10:35. doi: 10.21037/cco.2020.02.07. PubMed DOI

Ermoian R.P., Furniss C.S., Lamborn K.R., Basila D., Berger M.S., Gottschalk A.R., Nicholas M.K., Stokoe D., A Haas-Kogan D. Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin. Cancer Res. 2002;8:1100–1106. PubMed

Ruano Y., Ribalta T., de Lope R., Campos-Martín Y., Fiaño C., Pérez-Magán E., Hernández-Moneo J.-L., Mollejo M., Meléndez B. Worse outcome in primary glioblastoma multiforme with concurrent epidermal growth factor receptor and p53 alteration. Am. J. Clin. Pathol. 2009;131:257–263. doi: 10.1309/AJCP64YBDVCTIRWV. PubMed DOI

Bäcklund L.M., Nilsson B.R., Goike H.M., E Schmidt E., Liu L., Ichimura K., Collins V.P. Short postoperative survival for glioblastoma patients with a dysfunctional Rb1 pathway in combination with no wild-type PTEN. Clin. Cancer Res. 2003;9:4151–4158. PubMed

Shampay J., Blackburn E.H. Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1988;85:534–538. doi: 10.1073/pnas.85.2.534. PubMed DOI PMC

Nonoguchi N., Ohta T., Oh J.E., Kim Y.H., Kleihues P., Ohgaki H. TERT promoter mutations in primary and secondary glioblastomas. Acta Neuropathol. 2013;126:931–937. doi: 10.1007/s00401-013-1163-0. PubMed DOI

Spiegl-Kreinecker S., Lötsch D., Ghanim B., Pirker C., Mohr T., Laaber M., Weis S., Olschowski A., Webersinke G., Pichler J., et al. Prognostic quality of activating TERT promoter mutations in glioblastoma: Interaction with the rs2853669 polymorphism and patient age at diagnosis. Neuro Oncol. 2015;17:1231–1240. doi: 10.1093/neuonc/nov010. PubMed DOI PMC

Mosrati M.A., Malmström A., Lysiak M., Krysztofiak A., Hallbeck M., Milos P., Hallbeck A.-L., Bratthäll C., Strandéus M., Stenmark-Askmalm M., et al. TERT promoter mutations and polymorphisms as prognostic factors in primary glioblastoma. Oncotarget. 2015;6:16663–16673. doi: 10.18632/oncotarget.4389. PubMed DOI PMC

Simon M., Hosen I., Gousias K., Rachakonda S., Heidenreich B., Gessi M., Schramm J., Hemminki K., Waha A., Kumar R. TERT promoter mutations: A novel independent prognostic factor in primary glioblastomas. Neuro Oncol. 2015;17:45–52. doi: 10.1093/neuonc/nou158. PubMed DOI PMC

Kikuchi Z., Shibahara I., Yamaki T., Yoshioka E., Shofuda T., Ohe R., Matsuda K.-I., Saito R., Kanamori M., Kanemura Y., et al. TERT promoter mutation associated with multifocal phenotype and poor prognosis in patients with IDH wild-type glioblastoma. Neurooncol. Adv. 2020;2:vdaa114. doi: 10.1093/noajnl/vdaa114. PubMed DOI PMC

Fan H.-C., Chen C.-M., Chi C.-S., Tsai J.-D., Chiang K.-L., Chang Y.-K., Lin S.-Z., Harn H.-J. Targeting Telomerase and ATRX/DAXX Inducing Tumor Senescence and Apoptosis in the Malignant Glioma. Int. J. Mol. Sci. 2019;20:200. doi: 10.3390/ijms20010200. PubMed DOI PMC

Novotná B., Mareš J. Vývojová Biologie Pro Mediky. 1. vydání. Karolinum; Praha, Czech Republic: 2005. 99p.

Zhang Y., Dube C., Gibert M., Jr., Cruickshanks N., Wang B., Coughlan M., Yang Y., Setiady I., Deveau C., Saoud K., et al. The p53 Pathway in Glioblastoma. Cancers. 2018;10:297. doi: 10.3390/cancers10090297. PubMed DOI PMC

Aubrey B.J., Strasser A., Kelly G.L. Tumor-Suppressor Functions of the TP53 Pathway. Cold Spring Harb. Perspect. Med. 2016;6:a026062. doi: 10.1101/cshperspect.a026062. PubMed DOI PMC

Lee Y.-J., Seo H.W., Baek J.-H., Lim S.H., Hwang S.-G., Kim E.H. Gene expression profiling of glioblastoma cell lines depending on TP53 status after tumor-treating fields (TTFields) treatment. Sci. Rep. 2020;10:12272. doi: 10.1038/s41598-020-68473-6. PubMed DOI PMC

Wang X., Chen J.X., Liu J.P., You C., Liu Y.H., Mao Q. Gain of function of mutant TP53 in glioblastoma: Prognosis and response to temozolomide. Ann. Surg. Oncol. 2014;21:1337–1344. doi: 10.1245/s10434-013-3380-0. PubMed DOI

Homma T., Fukushima T., Vaccarella S., Yonekawa Y., Di Patre P.L., Franceschi S., Ohgaki H. Correlation among pathology, genotype, and patient outcomes in glioblastoma. J. Neuropathol. Exp. Neurol. 2006;65:846–854. doi: 10.1097/01.jnen.0000235118.75182.94. PubMed DOI

Cantero D., Mollejo M., Sepúlveda J.M., D’haene N., Gutiérrez-Guamán M.J., de Lope R., Fiaño C., Castresana J.S., Lebrun L., A Rey J., et al. TP53, ATRX alterations, and low tumor mutation load feature IDH-wildtype giant cell glioblastoma despite exceptional ultra-mutated tumors. Neurooncol. Adv. 2020;2:vdz059. doi: 10.1093/noajnl/vdz059. PubMed DOI PMC

Weller M., Felsberg J., Hartmann C., Berger H., Steinbach J.P., Schramm J., Westphal M., Schackert G., Simon M., Tonn J.C., et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: A prospective translational study of the German Glioma Network. J. Clin. Oncol. 2009;27:5743–5750. doi: 10.1200/JCO.2009.23.0805. PubMed DOI

Li S., Wang C., Chen J., Lan Y., Zhang W., Kang Z., Zheng Y., Zhang R., Yu J., Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct. Target. Ther. 2023;8:8. doi: 10.1038/s41392-022-01260-z. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...