Talazoparib Does Not Interact with ABCB1 Transporter or Cytochrome P450s, but Modulates Multidrug Resistance Mediated by ABCC1 and ABCG2: An in Vitro and Ex Vivo Study

. 2022 Nov 18 ; 23 (22) : . [epub] 20221118

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36430819

Grantová podpora
334120/C Grant Agency of Charles University
20-20414Y Czech Science Foundation
SVV 260 549 Charles University

Talazoparib (Talzenna) is a novel poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitor that is clinically used for the therapy of breast cancer. Furthermore, the drug has shown antitumor activity against different cancer types, including non-small cell lung cancer (NSCLC). In this work, we investigated the possible inhibitory interactions of talazoparib toward selected ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 biotransformation enzymes (CYPs) and evaluated its position in multidrug resistance (MDR). In accumulation studies, talazoparib interacted with the ABCC1 and ABCG2 transporters, but there were no significant effects on ABCB1. Furthermore, incubation assays revealed a negligible capacity of the tested drug to inhibit clinically relevant CYPs. In in vitro drug combination experiments, talazoparib synergistically reversed daunorubicin and mitoxantrone resistance in cells with ABCC1 and ABCG2 expression, respectively. Importantly, the position of an effective MDR modulator was further confirmed in drug combinations performed in ex vivo NSCLC patients-derived explants, whereas the possible victim role was refuted in comparative proliferation experiments. In addition, talazoparib had no significant effects on the mRNA-level expressions of MDR-related ABC transporters in the MCF-7 cellular model. In summary, our study presents a comprehensive overview on the pharmacokinetic drug-drug interactions (DDI) profile of talazoparib. Moreover, we introduced talazoparib as an efficient MDR antagonist.

Zobrazit více v PubMed

Shang S., Liu J., Verma V., Wu M., Welsh J., Yu J., Chen D. Combined treatment of non-small cell lung cancer using radiotherapy and immunotherapy: Challenges and updates. Cancer Commun. 2021;41:1086–1099. doi: 10.1002/cac2.12226. PubMed DOI PMC

Thandra K.C., Barsouk A., Saginala K., Aluru J.S., Barsouk A. Epidemiology of lung cancer. Contemp. Oncol. 2021;25:45. doi: 10.5114/wo.2021.103829. PubMed DOI PMC

Devesa S.S., Bray F., Vizcaino A.P., Parkin D.M. International lung cancer trends by histologic type: Male: Female differences diminishing and adenocarcinoma rates rising. Int. J. Cancer. 2005;117:294–299. doi: 10.1002/ijc.21183. PubMed DOI

Huang C.-Y., Ju D.-T., Chang C.-F., Reddy P.M., Velmurugan B.K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine. 2017;7 doi: 10.1051/bmdcn/2017070423. PubMed DOI PMC

Baudino T.A. Targeted cancer therapy: The next generation of cancer treatment. Curr. Drug Discov. Technol. 2015;12:3–20. doi: 10.2174/1570163812666150602144310. PubMed DOI

Jemal A., Siegel R., Xu J., Ward E. Cancer statistics, 2010. CA: A Cancer J. Clin. 2010;60:277–300. doi: 10.3322/caac.20073. PubMed DOI

Røsland G.V., Engelsen A.S.T. Novel points of attack for targeted cancer therapy. Basic Clin. Pharmacol. Toxicol. 2015;116:9–18. doi: 10.1111/bcpt.12313. PubMed DOI PMC

Morales J., Li L., Fattah F.J., Dong Y., Bey E.A., Patel M., Gao J., Boothman D.A. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit. Rev. ™ Eukaryot. Gene Expr. 2014;24 doi: 10.1615/CritRevEukaryotGeneExpr.2013006875. PubMed DOI PMC

Curtin N. PARP inhibitors for anticancer therapy. Biochem. Soc. Trans. 2014;42:82–88. doi: 10.1042/BST20130187. PubMed DOI

Hoy S.M. Talazoparib: First global approval. Drugs. 2018;78:1939–1946. doi: 10.1007/s40265-018-1026-z. PubMed DOI

Exman P., Barroso-Sousa R., Tolaney S.M. Evidence to date: Talazoparib in the treatment of breast cancer. OncoTargets Ther. 2019;12:5177. doi: 10.2147/OTT.S184971. PubMed DOI PMC

Przybytkowski E., Davis T., Hosny A., Eismann J., Matulonis U.A., Wulf G.M., Nabavi S. An immune-centric exploration of BRCA1 and BRCA2 germline mutation related breast and ovarian cancers. BMC Cancer. 2020;20:1–16. doi: 10.1186/s12885-020-6605-1. PubMed DOI PMC

Yoshida R. Hereditary breast and ovarian cancer (HBOC): Review of its molecular characteristics, screening, treatment, and prognosis. Breast Cancer. 2021;28:1167–1180. doi: 10.1007/s12282-020-01148-2. PubMed DOI PMC

Seelig A. P-Glycoprotein: One mechanism, many tasks and the consequences for pharmacotherapy of cancers. Front. Oncol. 2020:1989. doi: 10.3389/fonc.2020.576559. PubMed DOI PMC

Nikolaou M., Pavlopoulou A., Georgakilas A.G., Kyrodimos E. The challenge of drug resistance in cancer treatment: A current overview. Clin. Exp. Metastasis. 2018;35:309–318. doi: 10.1007/s10585-018-9903-0. PubMed DOI

Wang X., Zhang H., Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. (Alhambra Calif.) 2019;2:141. doi: 10.20517/cdr.2019.10. PubMed DOI PMC

Giddings E.L., Champagne D.P., Wu M.-H., Laffin J.M., Thornton T.M., Valenca-Pereira F., Culp-Hill R., Fortner K.A., Romero N., East J. Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance. Nat. Commun. 2021;12:1–19. doi: 10.1038/s41467-021-23071-6. PubMed DOI PMC

Kathawala R.J., Gupta P., Ashby Jr C.R., Chen Z.-S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updates. 2015;18:1–17. doi: 10.1016/j.drup.2014.11.002. PubMed DOI

Thomas C., Aller S.G., Beis K., Carpenter E.P., Chang G., Chen L., Dassa E., Dean M., Duong Van Hoa F., Ekiert D. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett. 2020;594:3767–3775. doi: 10.1002/1873-3468.13935. PubMed DOI PMC

Crawford R.R., Potukuchi P.K., Schuetz E.G., Schuetz J.D. Beyond competitive inhibition: Regulation of ABC transporters by kinases and protein-protein interactions as potential mechanisms of drug-drug interactions. Drug Metab. Dispos. 2018;46:567–580. doi: 10.1124/dmd.118.080663. PubMed DOI PMC

Hofman J., Vagiannis D., Chen S., Guo L. Roles of CYP3A4, CYP3A5 and CYP2C8 drug-metabolizing enzymes in cellular cytostatic resistance. Chem. -Biol. Interact. 2021;340:109448. doi: 10.1016/j.cbi.2021.109448. PubMed DOI

van Schaik R.H. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist. Updates. 2008;11:77–98. doi: 10.1016/j.drup.2008.03.002. PubMed DOI

Han X.-M., Zhou H.-H. Polymorphism of CYP450 and cancer susceptibility. Acta Pharmacol. Sin. 2000;21:673–679. PubMed

EMA European Medicines Agency, Guideline on the Investigation of Drug Interactions. CPMP/EWP/560/95/Rev. 1 Corr. 2. 2012. [(accessed on 16 November 2022)]. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf.

FDA Food and Drug Administration. In Vitro Drug Interaction Studies— Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions Guidance for Industry. [(accessed on 16 November 2022)];Clin. Pharmacol. Silver Spring MD. 2020 Available online: https://www.fda.gov/media/134582/download.

Beretta G.L., Cassinelli G., Pennati M., Zuco V., Gatti L. Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur. J. Med. Chem. 2017;142:271–289. doi: 10.1016/j.ejmech.2017.07.062. PubMed DOI

Wu S., Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol. Cancer. 2018;17:1–13. doi: 10.1186/s12943-018-0775-3. PubMed DOI PMC

Johnson Z.L., Chen J. Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell. 2017;168:1075–1085.e1079. doi: 10.1016/j.cell.2017.01.041. PubMed DOI

Aoyagi-Scharber M., Gardberg A.S., Yip B.K., Wang B., Shen Y., Fitzpatrick P.A. Structural basis for the inhibition of poly (ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone. Acta Crystallogr. Sect. F: Struct. Biol. Commun. 2014;70:1143–1149. doi: 10.1107/S2053230X14015088. PubMed DOI PMC

Yu Y., Chung C.H., Plotka A., Quinn K., Shi H., Pápai Z., Nguyen L., Wang D. A Phase 1 Mass Balance Study of 14C-Labeled Talazoparib in Patients With Advanced Solid Tumors. J. Clin. Pharmacol. 2019;59:1195–1203. doi: 10.1002/jcph.1415. PubMed DOI

Du W., Elemento O. Cancer systems biology: Embracing complexity to develop better anticancer therapeutic strategies. Oncogene. 2015;34:3215–3225. doi: 10.1038/onc.2014.291. PubMed DOI

Omran O.M. The prognostic value of breast cancer resistance protein (BCRB/ABCG2) expression in breast carcinomas. J. Environ. Pathol. Toxicol. Oncol. 2012;31 doi: 10.1615/JEnvironPatholToxicolOncol.2013006767. PubMed DOI

Wind N., Holen I. Multidrug resistance in breast cancer: From in vitro models to clinical studies. Int. J. Breast Cancer. 2011;2011 doi: 10.4061/2011/967419. PubMed DOI PMC

Nooter K., Brutel De La Riviere G., Look M., Van Wingerden K., Henzen-Logmans S., Scheper R., Flens M., Klijn J., Stoter G., Foekens J. The prognostic significance of expression of the multidrug resistance-associated protein (MRP) in primary breast cancer. Br. J. Cancer. 1997;76:486–493. doi: 10.1038/bjc.1997.414. PubMed DOI PMC

Mo W., Liu J.-Y., Zhang J.-T. Biochemistry and pharmacology of human ABCC1/MRP1 and its role in detoxification and in multidrug resistance of cancer chemotherapy. Recent Adv. Cancer Res. Ther. 2012:371–404.

Federico S.M., Stewart E., Coleman J.L., Bishop M.W., Santana V.M., Lam C., Hawkins D., Wu J., Mao S., Goshorn D.R. Phase I study of talazoparib and irinotecan in children and young adults with recurrent/refractory solid tumors. J. Clin. Oncol. 2017;35 doi: 10.1200/JCO.2017.35.15_suppl.10542. DOI

Kumar A., Jaitak V. Natural products as multidrug resistance modulators in cancer. Eur. J. Med. Chem. 2019;176:268–291. doi: 10.1016/j.ejmech.2019.05.027. PubMed DOI

Li M., Seiser E.L., Baldwin R.M., Ramirez J., Ratain M.J., Innocenti F., Kroetz D.L. ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. Pharm. J. 2018;18:35–42. doi: 10.1038/tpj.2016.75. PubMed DOI PMC

Liu C., Xing W., Yu H., Zhang W., Si T. ABCB1 and ABCG2 restricts the efficacy of gedatolisib (PF-05212384), a PI3K inhibitor in colorectal cancer cells. Cancer Cell Int. 2021;21:1–16. doi: 10.1186/s12935-021-01800-7. PubMed DOI PMC

Lok B.H., Gardner E.E., Schneeberger V.E., Ni A., Desmeules P., Rekhtman N., De Stanchina E., Teicher B.A., Riaz N., Powell S.N. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin. Cancer Res. 2017;23:523–535. doi: 10.1158/1078-0432.CCR-16-1040. PubMed DOI PMC

Veringa S.J., Biesmans D., van Vuurden D.G., Jansen M.H., Wedekind L.E., Horsman I., Wesseling P., Vandertop W.P., Noske D.P., Kaspers G.J. In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS ONE. 2013;8:e61512. doi: 10.1371/journal.pone.0061512. PubMed DOI PMC

Engert F., Kovac M., Baumhoer D., Nathrath M., Fulda S. Osteosarcoma cells with genetic signatures of BRCAness are susceptible to the PARP inhibitor talazoparib alone or in combination with chemotherapeutics. Oncotarget. 2017;8:48794. doi: 10.18632/oncotarget.10720. PubMed DOI PMC

Kizilbash S.H., Gupta S.K., Chang K., Kawashima R., Parrish K.E., Carlson B.L., Bakken K.K., Mladek A.C., Schroeder M.A., Decker P.A. Restricted delivery of talazoparib across the blood–brain barrier limits the sensitizing effects of PARP inhibition on temozolomide therapy in glioblastoma. Mol. Cancer Ther. 2017;16:2735–2746. doi: 10.1158/1535-7163.MCT-17-0365. PubMed DOI PMC

Elmeliegy M., Láng I., Smolyarchuk E.A., Chung C.H., Plotka A., Shi H., Wang D. Evaluation of the effect of P-glycoprotein inhibition and induction on talazoparib disposition in patients with advanced solid tumours. Br. J. Clin. Pharmacol. 2020;86:771–778. doi: 10.1111/bcp.14178. PubMed DOI PMC

Vagiannis D., Budagaga Y., Morell A., Zhang Y., Novotná E., Skarka A., Kammerer S., Küpper J.-H., Hanke I., Rozkoš T. Tepotinib Inhibits Several Drug Efflux Transporters and Biotransformation Enzymes: The Role in Drug–Drug Interactions and Targeting Cytostatic Resistance In Vitro and Ex Vivo. Int. J. Mol. Sci. 2021;22:11936. doi: 10.3390/ijms222111936. PubMed DOI PMC

Vagiannis D., Novotna E., Skarka A., Kammerer S., Küpper J.-H., Chen S., Guo L., Staud F., Hofman J. Ensartinib (X-396) effectively modulates pharmacokinetic resistance mediated by ABCB1 and ABCG2 drug efflux transporters and CYP3A4 biotransformation enzyme. Cancers. 2020;12:813. doi: 10.3390/cancers12040813. PubMed DOI PMC

Vagiannis D., Zhang Y., Budagaga Y., Novotna E., Skarka A., Kammerer S., Küpper J.-H., Hofman J. Alisertib shows negligible potential for perpetrating pharmacokinetic drug-drug interactions on ABCB1, ABCG2 and cytochromes P450, but acts as dual-activity resistance modulator through the inhibition of ABCC1 transporter. Toxicol. Appl. Pharmacol. 2022;434:115823. doi: 10.1016/j.taap.2021.115823. PubMed DOI

Goos J.A., Verbeek J., Geldof A.A., Hiemstra A.C., van de Wiel M.A., Adamzek K.A., Delis-Van Diemen P.M., Stroud S.G., Bradley D.P., Meijer G.A. Molecular imaging of aurora kinase A (AURKA) expression: Synthesis and preclinical evaluation of radiolabeled alisertib (MLN8237) Nucl. Med. Biol. 2016;43:63–72. doi: 10.1016/j.nucmedbio.2015.08.007. PubMed DOI

Michaelis M., Selt F., Rothweiler F., Löschmann N., Nüsse B., Dirks W.G., Zehner R., Cinatl Jr J. Aurora kinases as targets in drug-resistant neuroblastoma cells. PLoS ONE. 2014;9:e108758. doi: 10.1371/journal.pone.0108758. PubMed DOI PMC

Guney Eskiler G., Cecener G., Egeli U., Tunca B. Talazoparib nanoparticles for overcoming multidrug resistance in triple-negative breast cancer. J. Cell. Physiol. 2020;235:6230–6245. doi: 10.1002/jcp.29552. PubMed DOI

Wu R. Growth of Human Lung Tumor Cells in Culture. In: Pfragner R., Freshney R.I., editors. Culture of Human Tumor Cells. Wiley-Liss Inc; Hoboken, NJ, USA: 2004. pp. 1–21.

Hofman J., Sorf A., Vagiannis D., Sucha S., Kammerer S., Küpper J.-H., Chen S., Guo L., Ceckova M., Staud F. Brivanib Exhibits Potential for Pharmacokinetic Drug–Drug Interactions and the Modulation of Multidrug Resistance through the Inhibition of Human ABCG2 Drug Efflux Transporter and CYP450 Biotransformation Enzymes. Mol. Pharm. 2019;16:4436–4450. doi: 10.1021/acs.molpharmaceut.9b00361. PubMed DOI

Hofman J., Sorf A., Vagiannis D., Sucha S., Novotna E., Kammerer S., Küpper J.-H., Ceckova M., Staud F. Interactions of alectinib with human ATP-binding cassette drug efflux transporters and cytochrome P450 biotransformation enzymes: Effect on pharmacokinetic multidrug resistance. Drug Metab. Dispos. 2019;47:699–709. doi: 10.1124/dmd.119.086975. PubMed DOI

Vagiannis D., Yu Z., Novotna E., Morell A., Hofman J. Entrectinib reverses cytostatic resistance through the inhibition of ABCB1 efflux transporter, but not the CYP3A4 drug-metabolizing enzyme. Biochem. Pharmacol. 2020;178:114061. doi: 10.1016/j.bcp.2020.114061. PubMed DOI

Irwin J.J., Sterling T., Mysinger M.M., Bolstad E.S., Coleman R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Modeling. 2012;52:1757–1768. doi: 10.1021/ci3001277. PubMed DOI PMC

Schüttelkopf A.W., Van Aalten D.M. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2004;60:1355–1363. doi: 10.1107/S0907444904011679. PubMed DOI

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. doi: 10.1002/jcc.20084. PubMed DOI

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The protein data bank. Nucleic Acids Res. 2000;28:235–242. doi: 10.1093/nar/28.1.235. PubMed DOI PMC

Jackson S.M., Manolaridis I., Kowal J., Zechner M., Taylor N.M., Bause M., Bauer S., Bartholomaeus R., Bernhardt G., Koenig B. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 2018;25:333–340. doi: 10.1038/s41594-018-0049-1. PubMed DOI

Johnson Z.L., Chen J. ATP binding enables substrate release from multidrug resistance protein 1. Cell. 2018;172:81–89.e10. doi: 10.1016/j.cell.2017.12.005. PubMed DOI

Manolaridis I., Jackson S.M., Taylor N.M., Kowal J., Stahlberg H., Locher K.P. Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature. 2018;563:426–430. doi: 10.1038/s41586-018-0680-3. PubMed DOI PMC

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Morris G.M., Huey R., Lindstrom W., Sanner M.F., Belew R.K., Goodsell D.S., Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC

Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Adasme M.F., Linnemann K.L., Bolz S.N., Kaiser F., Salentin S., Haupt V.J., Schroeder M. PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49:W530–W534. doi: 10.1093/nar/gkab294. PubMed DOI PMC

Zhang Y., Vagiannis D., Budagaga Y., Sabet Z., Hanke I., Rozkoš T., Hofman J. Sonidegib potentiates the cancer cells’ sensitivity to cytostatic agents by functional inhibition of ABCB1 and ABCG2 in vitro and ex vivo. Biochem. Pharmacol. 2022:115009. doi: 10.1016/j.bcp.2022.115009. PubMed DOI

Chou T.-C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...