- MeSH
- lidé MeSH
- lipektomie * MeSH
- odběr tkání a orgánů MeSH
- tuková tkáň MeSH
- tukové buňky MeSH
- viabilita buněk fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
Aggregation of small neuronal protein α-synuclein (αSyn) in amyloid fibrils is considered to be one of the main causes of Parkinson's disease. Inhibition of this aggregation is a promising approach for disease treatment. Dozens of compounds able to inhibit αSyn fibrillization in solution were developed during the last decade. However, the applicability of most of them in the cellular environment was not established because of the absence of a suitable cell-based assay. In this work, we developed an assay for testing αSyn aggregation inhibitors in cells that is based on fluorescence resonance energy transfer (FRET) between labeled αSyn molecules in fibrils. The assay directly reports the amount of fibrillized αSyn and is more reliable than the assays based on cell viability. Moreover, we showed that cell viability decline does not always correlate with the amount of misfolded αSyn. The developed FRET-based assay does not interfere with the aggregation process and is suitable for high-throughput testing of αSyn aggregation inhibitors. Its application can sort out non-specific inhibitors and thus significantly facilitate the development of drugs for Parkinson`s disease.
- MeSH
- alfa-synuklein analýza antagonisté a inhibitory metabolismus MeSH
- benzodioxoly farmakologie MeSH
- elektroporace metody MeSH
- HeLa buňky MeSH
- intracelulární tekutina chemie účinky léků metabolismus MeSH
- lidé MeSH
- proteinové agregáty účinky léků fyziologie MeSH
- pyrazoly farmakologie MeSH
- rezonanční přenos fluorescenční energie metody MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cytochrome P450 family 1 (CYP1) enzymes contribute both to metabolism of xenobiotics and to the control of endogenous levels of ligands of the aryl hydrocarbon receptor (AhR). Their activities, similar to other CYPs, can be altered in tumor tissues. Here, we examined a possible role of proliferative/survival pathways signaling, which is often deregulated in tumor cells, and possible links with p300 histone acetyltransferase (a transcriptional co-activator) in the control of CYP1 expression, focusing particularly on CYP1A1. Using cell models derived from human liver, we observed that the induction of CYP1A1 expression, as well as other CYP1 enzymes, was reduced in exponentially growing cells, as compared with their non-dividing counterparts. The siRNA-mediated inhibition of proliferation/pro-survival signaling pathway effectors (such as β-catenin and/or Hippo pathway effectors YAP/TAZ) increased the AhR ligand-induced CYP1A1 mRNA levels in liver HepaRG cells, and/or in colon carcinoma HCT-116 cells. The activation of proliferative Wnt/β-catenin signaling in HCT-116 cells reduced both the induction of CYP1 enzymes and the binding of p300 to the promoter of CYP1A1 or CYP1B1 genes. These results seem to indicate that aberrant proliferative signaling in tumor cells could suppress induction of CYP1A1 (or other CYP1 enzymes) via competition for p300 binding. This mechanism could be involved in modulation of the metabolism of both endogenous and exogenous substrates of CYP1A1 (and other CYP1 enzymes), with possible further consequences for alterations of the AhR signaling in tumor cells, or additional functional roles of CYP1 enzymes.
- MeSH
- cytochrom P-450 CYP1A1 biosyntéza genetika MeSH
- enzymová indukce fyziologie MeSH
- HCT116 buňky MeSH
- játra patologie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory tračníku genetika patologie MeSH
- proliferace buněk fyziologie MeSH
- protein p300 asociovaný s E1A metabolismus MeSH
- regulace genové exprese u nádorů MeSH
- signální dráha Hippo fyziologie MeSH
- signální dráha Wnt fyziologie MeSH
- signální transdukce fyziologie MeSH
- viabilita buněk fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The phenylpyrazole fipronil is an insecticide that inhibits γ -amino-butyric acid (GABA) ionotropic receptors in the central nervous system. Experimental evidence suggests that fipronil acts as a neurotoxin and it is implicated in neurodegenerative diseases; however, the mechanisms of neurotoxicity are not fully elucidated. The objective of this study was to quantify mechanisms of fipronil-induced neurotoxicity in dopamine cells. Rat primary immortalized mesencephalic dopaminergic cells (N27) were treated with fipronil (0.25 up to 500 μM depending on the assay). We measured endpoints related to mitochondrial bioenergetics, mitophagy, mitochondrial membrane potential, and ATP production in addition to discerning transcriptome responses to the pesticide. Fipronil reduced cell viability at 500 μM after 24 h exposure and caspase 3/7 activity was significant increased after 6 and 12 h by 250 and 500 μM fipronil. Subsequent endpoints were thus assessed at concentrations that were below cytotoxicity. We measured oxidative respiration of N27 cells following a 24 h exposure to one dose of either 0.25, 2.5, 25, or 50 μM fipronil. Oxygen consumption rates (OCR) were not different between vehicle-control and 0.25 or 2.5 μM fipronil treatments, but there was a ∼40-60 % reduction in basal respiration, as well as reduced oligomycin-induced ATP production at 50 μM. The reduction in OCR is hypothesized to be related to lower mitochondrial mass due to mitophagy. Mitochondrial membrane potential was also sensitive to fipronil, and it was compromised at concentrations of 2.5 μM and above. To further elucidate the mechanisms linked to neurotoxicity, we conducted transcriptomics in dopamine cells following treatment with 25 μM fipronil. Fipronil suppressed transcriptional networks associated with mitochondria (damage, depolarization, permeability, and fission), consistent with its effects on mitochondrial membrane potential. Altered gene networks also included those related to Alzheimer disease, inflammatory disease, nerve fiber degeneration, and neurofibrillary tangles. This study clarifies molecular targets of fipronil-induced neurotoxicity and supports, through multiple lines of evidence, that fipronil acts as a mitochondrial toxicant in dopamine cells. This is relevant to neurodegenerative diseases like Parkinson's disease as exposure to fipronil is associated with the progressive loss of nigrostriatal dopaminergic neurons in rodents.
- MeSH
- dopaminergní neurony účinky léků metabolismus MeSH
- insekticidy toxicita MeSH
- krysa rodu rattus MeSH
- membránový potenciál mitochondrií účinky léků fyziologie MeSH
- mitochondrie účinky léků metabolismus MeSH
- pyrazoly toxicita MeSH
- transformované buněčné linie MeSH
- transkriptom účinky léků fyziologie MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sirtuin 6 (SIRT6), a member of sirtuin family (SIRT1-7), regulates a variety of cellular processes involved in aging, metabolism, and cancer. Dysregulation of SIRT6 is widely observed in different breast cancer subtypes; however, the role and function of SIRT6 in cancer development remain largely unexplored. The aim of this study was to identify novel compounds targeting SIRT6 which may provide a new approach in development of anti-cancer therapy for breast cancer. Virtual screening was utilized to discover potential compounds targeting SIRT6 for in vitro screening. In addition, novel 1,4-dihydropyridine derivatives were synthetized and further subjected for the screening. The impact of the compounds on the deacetylation activity of SIRT6 was determined with HPLC method. The anti-cancer activities were screened for a panel of breast cancer cells. A set of 1,4-dihydropyridine derivatives was identified as SIRT6 inhibitors. A SIRT6 activating compound, (2,4-dihydroxy-phenyl)-2-oxoethyl 2-(3-methyl-4-oxo-2-phenyl-4H-chromen-8-yl)acetate (later called as 4H-chromen), was discovered and it provided 30-40-fold maximal activation. 4H-chromen was proposed to bind similarly to quercetin and place to previously reported SIRT6 activator sites. 4H-chromen was investigated in various breast cancer cells, and it decreased cell proliferation in all cells as well as arrested cell cycle in triple negative cells. Overall, this study describes a highly potent SIRT6 activator and new inhibitors that represent a novel tool to study the mechanism of SIRT6 function.
- MeSH
- antitumorózní látky chemie farmakologie terapeutické užití MeSH
- časná detekce nádoru metody MeSH
- léky antitumorózní - screeningové testy metody MeSH
- lidé MeSH
- nádory prsu farmakoterapie metabolismus MeSH
- sekundární struktura proteinů MeSH
- simulace molekulového dockingu metody MeSH
- sirtuiny antagonisté a inhibitory chemie metabolismus MeSH
- terciární struktura proteinů MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: The liver is the most widely used site for pancreatic islet transplantation. However, several site-specific limitations impair functional success, with instant blood-mediated inflammatory reaction being the most important. The aim of this study was to develop a preclinical model for placement of the islet graft into a highly vascularized omental flap using a fibrin gel. For this purpose, we tested islet viability by bioluminescence imaging (BLI). PROCEDURES: Pancreatic islets were isolated from luciferase-positive and luciferase-negative rats, mixed at a 1:1 ratio, placed into a plasma-thrombin bioscaffold, and transplanted in standard (10 pancreatic islets/g wt; n = 10) and marginal (4 pancreatic islets/g wt; n = 7) numbers into the omentums of syngeneic diabetic animals. For the control, 4 pancreatic islets/g were transplanted into the liver using the standard procedure (n = 7). Graft viability was tested by bioluminescence at days 14, 30, 60, and 90 post transplant. Glucose levels, intravenous glucose tolerance, and serum C-peptide were assessed regularly. RESULTS: Nonfasting glucose levels < 10 mmol/l were restored in all animals. While islet viability in the omentum was clearly detected by stable luminescence signals throughout the whole study period, no signals were detected from islets transplanted into the liver. The bioluminescence signals were highly correlated with stimulated C-peptide levels detected at 80 days post transplant. Glucose tolerance did not differ among the 3 groups. CONCLUSIONS: We successfully tested a preclinical model of islet transplantation into the greater omentum using a biocompatible scaffold made from autologous plasma and human thrombin. Both standard and marginal pancreatic islet numbers in a gel-form bioscaffold placed in the omentum restored glucose homeostasis in recipients with diabetes. Bioluminescence was shown promising as a direct proof of islet viability.
- MeSH
- krysa rodu rattus MeSH
- Langerhansovy ostrůvky diagnostické zobrazování MeSH
- luminiscenční měření metody MeSH
- molekulární zobrazování metody MeSH
- omentum diagnostické zobrazování MeSH
- přežívání štěpu fyziologie MeSH
- transplantace Langerhansových ostrůvků * MeSH
- viabilita buněk fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Circulating miRNAs have been proposed as the effective diagnostic biomarkers for muscular fibrosis-associated diseases. However, circulating biomarkers for early diagnosis of contracture muscles are limited in gluteal muscle contracture (GMC) patients. Here we sought to explore the abnormally expressed miRNAs in plasma and contraction bands of GMC patients. The results showed miR-29a-3p expression in plasma and contraction bands tissue was significantly reduced in GMC patients compared with normal control. Cell viability and levels of proliferation-associated protein cyclin D1 and cyclin-dependent-kinase 2 (CDK2) were powerfully inhibited by miR-29a mimics and enhanced by miR-29a inhibitor compared with negative control. Furthermore, miR-29a mimics effectively impeded, while miR-29a inhibitor enhanced the expression of collagen I and collagen III, followed by the secretion of transforming growth factor beta1 (TGF-beta1), TGF-beta3 and connective tissue growth factor (CTGF) in primary human contraction bands (CB) fibroblasts. The miR-29a-3p negatively regulated the expression of TGF-beta1 through binding to the 3´ UTR region of SERPINH1 (encoding heat shock protein HSP47), but had no effect on Smad2 activity. The miR-29a-3p was inversely correlated with HSP47 in contraction bands tissue from GMC patients. Collectively, miR-29a was notably depressed and regulated cell viability and fibrosis by directly targeting HSP47 in GMC, which suggest that circulating miR-29a might be a potential biomarker for early diagnosis and provides a novel therapeutic target for GMC.
- MeSH
- biologické markery metabolismus MeSH
- dospělí MeSH
- fibroblasty metabolismus patologie MeSH
- fibróza genetika patologie prevence a kontrola MeSH
- hýždě patologie MeSH
- kontraktura genetika patologie prevence a kontrola MeSH
- kultivované buňky MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- proteiny tepelného šoku HSP47 genetika metabolismus MeSH
- studie případů a kontrol MeSH
- svaly metabolismus patologie MeSH
- transformující růstový faktor beta1 genetika metabolismus MeSH
- viabilita buněk fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Chemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a search for new chemotherapeutic drugs. Many classes of compounds have been investigated over the years to discover new targets and synergistic mechanisms of action including multicellular targets. In this work, we designed a new chemotherapeutic drug candidate against cancer, namely, [Ru(DIP)2(sq)](PF6) (Ru-sq) (DIP = 4,7-diphenyl-1,10-phenanthroline; sq = semiquinonate ligand). The aim was to combine the great potential expressed by Ru(II) polypyridyl complexes and the singular redox and biological properties associated with the catecholate moiety. Experimental evidence (e.g., X-ray crystallography, electron paramagnetic resonance, electrochemistry) demonstrates that the semiquinonate is the preferred oxidation state of the dioxo ligand in this complex. The biological activity of Ru-sq was then scrutinized in vitro and in vivo, and the results highlight the promising potential of this complex as a chemotherapeutic agent against cancer.
- MeSH
- antitumorózní látky chemie metabolismus farmakologie MeSH
- chinony chemie metabolismus farmakologie MeSH
- HeLa buňky MeSH
- lidé MeSH
- ligandy MeSH
- myši nahé MeSH
- myši MeSH
- oxidace-redukce účinky léků MeSH
- ruthenium chemie metabolismus farmakologie MeSH
- viabilita buněk účinky léků fyziologie MeSH
- xenogenní modely - testy antitumorózní aktivity metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Superparamagnetic iron oxide nanoparticles (SPIOn) are widely used as a contrast agent for cell labeling. Macrophages are the first line of defense of organisms in contact with nanoparticles after their administration. In this study we investigated the effect of silica-coated nanoparticles (γ-Fe2O3-SiO2) with or without modification by an ascorbic acid (γ-Fe2O3-SiO2-ASA), which is meant to act as an antioxidative agent on rat peritoneal macrophages. Both types of nanoparticles were phagocytosed by macrophages in large amounts as confirmed by transmission electron microscopy and Prusian blue staining, however they did not substantially affect the viability of exposed cells in monitored intervals. We further explored cytotoxic effects related to oxidative stress, which is frequently documented in cells exposed to nanoparticles. Our analysis of double strand breaks (DSBs) marker γH2AX showed an increased number of DSBs in cells treated with nanoparticles. Nanoparticle exposure further revealed only slight changes in the expression of genes involved in oxidative stress response. Lipid peroxidation, another marker of oxidative stress, was not significantly affirmed after nanoparticle exposure. Our data indicate that the effect of both types of nanoparticles on cell viability, or biomolecules such as DNA or lipids, was similar; however the presence of ascorbic acid, either bound to the nanoparticles or added to the cultivation medium, worsened the negative effect of nanoparticles in various tests performed. The attachment of ascorbic acid on the surface of nanoparticles did not have a protective effect against induced cytotoxicity, as expected.
- MeSH
- antioxidancia metabolismus toxicita MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- kyselina askorbová metabolismus toxicita MeSH
- magnetické nanočástice toxicita MeSH
- peritoneální makrofágy účinky léků metabolismus MeSH
- potkani Wistar MeSH
- synergismus léků MeSH
- viabilita buněk účinky léků fyziologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The oogenesis and folliculogenesis are closely linked and occur simultaneously in the growing ovarian follicles. Biochemical and morphological changes in oocytes (OC) and surrounding granulosa cells (GCs) are highly complex and depend on many factors, including intercellular communication. GCs are cells with many functions, often crucial for the proper viability of the oocyte and subsequent positive fertilization. The purpose of this study was to analyze gene expression in porcine GCs, to define differentially expressed genes belongs to the "cell growth", "aging", "positive regulation of cell death", "apoptotic process", "regulation of cell death", "cell death" and "negative regulation of cell death" ontology groups during the short - term primary in vitro culture. Microarrays were employed to study the transcriptome contained in the total RNA of the cultured GCs. Ovaries were obtained after slaughter, from 40 gilts of swine aged 170 days. The cells were obtained through puncture of the ovaries, collection of follicular fluid, removal of the cumulus - oocyte complexes and centrifugation. The cells were then cultured in vitro. The RNA material was obtained before the culture was established (0h) and then after 48h, 96h and 144h of its course. From 182 differently expressed genes belonging to the these ontology groups, we have selected POSTN, FN1, FMOD, ITGB3, DCN, SERPINB2, SFRP2, IGFBP5, EMP1, and CCL2 which were upregulated, as well as DAPL1, ESR1, IHH, TGFBR3, PPARD, PDK4, TXNIP, IFIT3, CSRNP3, and TNFSF10 genes whose expression was downregulated during the time of in vitro culture of the GCs. The significance of the differential gene expression is to provide new information on the molecular aspects of in vitro granulosa cell culture.
- MeSH
- apoptóza fyziologie MeSH
- čipová analýza proteinů MeSH
- down regulace MeSH
- folikulární buňky fyziologie MeSH
- kultivované buňky MeSH
- prasata MeSH
- regulace genové exprese fyziologie MeSH
- transkriptom MeSH
- upregulace MeSH
- viabilita buněk fyziologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH