FoxO1-GAB1 axis regulates homing capacity and tonic AKT activity in chronic lymphocytic leukemia
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
802644
European Research Council - International
PubMed
33786575
PubMed Central
PMC8513669
DOI
10.1182/blood.2020008101
PII: S0006-4971(21)00753-9
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční biosyntéza MeSH
- adenin analogy a deriváty farmakologie MeSH
- chronická lymfatická leukemie farmakoterapie metabolismus patologie MeSH
- forkhead box protein O1 metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- piperidiny farmakologie MeSH
- pohyb buněk * MeSH
- protoonkogenní proteiny c-akt metabolismus MeSH
- regulace genové exprese u leukemie * MeSH
- signální transdukce * MeSH
- upregulace * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- adenin MeSH
- forkhead box protein O1 MeSH
- FOXO1 protein, human MeSH Prohlížeč
- GAB1 protein, human MeSH Prohlížeč
- ibrutinib MeSH Prohlížeč
- piperidiny MeSH
- protoonkogenní proteiny c-akt MeSH
Recirculation of chronic lymphocytic leukemia (CLL) cells between the peripheral blood and lymphoid niches plays a critical role in disease pathophysiology, and inhibiting this process is one of the major mechanisms of action for B-cell receptor (BCR) inhibitors such as ibrutinib and idelalisib. Migration is a complex process guided by chemokine receptors and integrins. However, it remains largely unknown how CLL cells integrate multiple migratory signals while balancing survival in the peripheral blood and the decision to return to immune niches. Our study provided evidence that CXCR4/CD5 intraclonal subpopulations can be used to study the regulation of migration of CLL cells. We performed RNA profiling of CXCR4dimCD5bright vs CXCR4brightCD5dim CLL cells and identified differential expression of dozens of molecules with a putative function in cell migration. GRB2-associated binding protein 1 (GAB1) positively regulated CLL cell homing capacity of CXCR4brightCD5dim cells. Gradual GAB1 accumulation in CLL cells outside immune niches was mediated by FoxO1-induced transcriptional GAB1 activation. Upregulation of GAB1 also played an important role in maintaining basal phosphatidylinositol 3-kinase (PI3K) activity and the "tonic" AKT phosphorylation required to sustain the survival of resting CLL B cells. This finding is important during ibrutinib therapy, because CLL cells induce the FoxO1-GAB1-pAKT axis, which represents an adaptation mechanism to the inability to home to immune niches. We have demonstrated that GAB1 can be targeted therapeutically by novel GAB1 inhibitors, alone or in combination with BTK inhibition. GAB1 inhibitors induce CLL cell apoptosis, impair cell migration, inhibit tonic or BCR-induced AKT phosphorylation, and block compensatory AKT activity during ibrutinib therapy.
Centre for Neuroscience CEITEC Masaryk University Brno Czech Republic
Department of Experimental Therapeutics The University of Texas MD Anderson Cancer Center Houston TX
Department of Histology and Embryology Faculty of Medicine and
Experimental Biophotonics CEITEC University of Technology Brno Czech Republic
Zobrazit více v PubMed
Calissano C, Damle RN, Marsilio S, et al. . Intraclonal complexity in chronic lymphocytic leukemia: fractions enriched in recently born/divided and older/quiescent cells. Mol Med. 2011;17(11-12):1374-1382. PubMed PMC
Pavlasova G, Borsky M, Seda V, et al. . Ibrutinib inhibits CD20 upregulation on CLL B cells mediated by the CXCR4/SDF-1 axis. Blood. 2016;128(12):1609-1613. PubMed PMC
Pavlasova G, Borsky M, Svobodova V, et al. . Rituximab primarily targets an intra-clonal BCR signaling proficient CLL subpopulation characterized by high CD20 levels. Leukemia. 2018;32(9):2028-2031. PubMed
Herndon TM, Chen SS, Saba NS, et al. . Direct in vivo evidence for increased proliferation of CLL cells in lymph nodes compared to bone marrow and peripheral blood. Leukemia. 2017;31(6):1340-1347. PubMed PMC
Bartholdy BA, Wang X, Yan XJ, et al. . CLL intraclonal fractions exhibit established and recently acquired patterns of DNA methylation. Blood Adv. 2020;4(5):893-905. PubMed PMC
Chen SS, Chang BY, Chang S, et al. . BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia. 2016;30(4):833-843. PubMed PMC
Sharma S, Pavlasova GM, Seda V, et al. . miR-29 modulates CD40 signaling in chronic lymphocytic leukemia by targeting TRAF4: an axis affected by BCR inhibitors [published online ahead of print 10 November 2020]. Blood. doi:10.1182/blood.2020005627. PubMed PMC
Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV. Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol. 1996;92(1):97-103. PubMed
Herishanu Y, Pérez-Galán P, Liu D, et al. . The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2): 563-574. PubMed PMC
Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell’Aquila M, Kipps TJ. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood. 2000;96(8):2655-2663. PubMed
Mraz M, Zent CS, Church AK, et al. . Bone marrow stromal cells protect lymphoma B-cells from rituximab-induced apoptosis and targeting integrin α-4-β-1 (VLA-4) with natalizumab can overcome this resistance. Br J Haematol. 2011;155(1):53-64. PubMed PMC
Byrd JC, Furman RR, Coutre SE, et al. . Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32-42. PubMed PMC
Furman RR, Sharman JP, Coutre SE, et al. . Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997-1007. PubMed PMC
Ponader S, Chen SS, Buggy JJ, et al. . The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood. 2012;119(5):1182-1189. PubMed PMC
Arbonés ML, Ord DC, Ley K, et al. . Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity. 1994;1(4):247-260. PubMed
Lafouresse F, Bellard E, Laurent C, et al. . L-selectin controls trafficking of chronic lymphocytic leukemia cells in lymph node high endothelial venules in vivo. Blood. 2015;126(11):1336-1345. PubMed
Till KJ, Lin K, Zuzel M, Cawley JC. The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood. 2002;99(8):2977-2984. PubMed
Tissino E, Benedetti D, Herman SEM, et al. . Functional and clinical relevance of VLA-4 (CD49d/CD29) in ibrutinib-treated chronic lymphocytic leukemia. J Exp Med. 2018; 215(2):681-697. PubMed PMC
Ghobrial IM, Bone ND, Stenson MJ, et al. . Expression of the chemokine receptors CXCR4 and CCR7 and disease progression in B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma. Mayo Clin Proc. 2004;79(3):318-325. PubMed
Burger JA, Burger M, Kipps TJ. Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood. 1999; 94(11):3658-3667. PubMed
Bürkle A, Niedermeier M, Schmitt-Gräff A, Wierda WG, Keating MJ, Burger JA. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood. 2007;110(9):3316-3325. PubMed
Niemann CU, Herman SE, Maric I, et al. . Disruption of in vivo Chronic Lymphocytic Leukemia Tumor-Microenvironment Interactions by Ibrutinib–Findings from an Investigator-Initiated Phase II Study. Clin Cancer Res. 2016;22(7):1572-1582. PubMed PMC
Sivina M, Xiao L, Kim E, et al. . CXCL13 plasma levels function as a biomarker for disease activity in patients with chronic lymphocytic leukemia [published online ahead of print 21 Oct 2020]. Leukemia. doi:10.1038/s41375-020-01063-7 PubMed PMC
Ringshausen I, Schneller F, Bogner C, et al. . Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood. 2002;100(10):3741-3748. PubMed
Srinivasan L, Sasaki Y, Calado DP, et al. . PI3 kinase signals BCR-dependent mature B cell survival. Cell. 2009;139(3):573-586. PubMed PMC
Zhuang J, Hawkins SF, Glenn MA, et al. . Akt is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential of Akt inhibition. Haematologica. 2010;95(1):110-118. PubMed PMC
Gobessi S, Laurenti L, Longo PG, et al. . Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia. 2009;23(4): 686-697. PubMed
Herman SE, Sun X, McAuley EM, et al. . Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia. 2013;27(12):2311-2321. PubMed PMC
Lam KP, Kühn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997;90(6):1073-1083. PubMed
Ondrisova L, Mraz M. Genetic and Non-Genetic Mechanisms of Resistance to BCR Signaling Inhibitors in B Cell Malignancies. Front Oncol. 2020;10:591577. PubMed PMC
Sang H, Li T, Li H, Liu J. Down-regulation of Gab1 inhibits cell proliferation and migration in hilar cholangiocarcinoma. PLoS One. 2013;8(11):e81347. PubMed PMC
Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev. 2005;19(18):2187-2198. PubMed PMC
Ingham RJ, Holgado-Madruga M, Siu C, Wong AJ, Gold MR. The Gab1 protein is a docking site for multiple proteins involved in signaling by the B cell antigen receptor. J Biol Chem. 1998;273(46):30630-30637. PubMed
Ingham RJ, Santos L, Dang-Lawson M, et al. . The Gab1 docking protein links the b cell antigen receptor to the phosphatidylinositol 3-kinase/Akt signaling pathway and to the SHP2 tyrosine phosphatase. J Biol Chem. 2001;276(15):12257-12265. PubMed
Mraz M, Chen L, Rassenti LZ, et al. . miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1. Blood. 2014;124(1):84-95. PubMed PMC
Meng S, Chen Z, Munoz-Antonia T, Wu J. Participation of both Gab1 and Gab2 in the activation of the ERK/MAPK pathway by epidermal growth factor. Biochem J. 2005;391(pt 1):143-151. PubMed PMC
Cai T, Nishida K, Hirano T, Khavari PA. Gab1 and SHP-2 promote Ras/MAPK regulation of epidermal growth and differentiation. J Cell Biol. 2002;159(1):103-112. PubMed PMC
Takahashi-Tezuka M, Yoshida Y, Fukada T, et al. . Gab1 acts as an adapter molecule linking the cytokine receptor gp130 to ERK mitogen-activated protein kinase. Mol Cell Biol. 1998;18(7):4109-4117. PubMed PMC
Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJA. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature. 1996;379 (6565):560-564. PubMed
Sakkab D, Lewitzky M, Posern G, et al. . Signaling of hepatocyte growth factor/scatter factor (HGF) to the small GTPase Rap1 via the large docking protein Gab1 and the adapter protein CRKL. J Biol Chem. 2000;275(15):10772-10778. PubMed
Hertlein E, Beckwith KA, Lozanski G, et al. . Characterization of a new chronic lymphocytic leukemia cell line for mechanistic in vitro and in vivo studies relevant to disease. PLoS One. 2013;8(10):e76607. PubMed PMC
Shultz LD, Lyons BL, Burzenski LM, et al. . Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174(10):6477-6489. PubMed
Chen L, Du-Cuny L, Moses S, et al. . Novel inhibitors induce large conformational changes of GAB1 pleckstrin homology domain and kill breast cancer cells. PLOS Comput Biol. 2015;11(1):e1004021. PubMed PMC
Cerna K, Oppelt J, Chochola V, et al. . MicroRNA miR-34a downregulates FOXP1 during DNA damage response to limit BCR signalling in chronic lymphocytic leukaemia B cells. Leukemia. 2019;33(2):403-414. PubMed
Chen L, Widhopf G, Huynh L, et al. . Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002;100(13):4609-4614. PubMed
Bagnara D, Kaufman MS, Calissano C, et al. . A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood. 2011;117(20):5463-5472. PubMed PMC
Ashburner M, Ball CA, Blake JA, et al. . The Gene Ontology Consortium . Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25-29. PubMed PMC
Lambert SA, Jolma A, Campitelli LF, et al. . The Human Transcription Factors [published correction appears in Cell. 2018;175(2):598-599]. Cell. 2018;172(4):650-665. PubMed
Kerdiles YM, Beisner DR, Tinoco R, et al. . Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol. 2009;10(2):176-184. PubMed PMC
Dengler HS, Baracho GV, Omori SA, et al. . Distinct functions for the transcription factor Foxo1 at various stages of B cell differentiation. Nat Immunol. 2008;9(12):1388-1398. PubMed PMC
Sander S, Chu VT, Yasuda T, et al. . PI3 Kinase and FOXO1 Transcription Factor Activity Differentially Control B Cells in the Germinal Center Light and Dark Zones. Immunity. 2015;43(6):1075-1086. PubMed
Kabrani E, Chu VT, Tasouri E, et al. . Nuclear FOXO1 promotes lymphomagenesis in germinal center B cells. Blood. 2018;132(25):2670-2683. PubMed
Beekman R, Chapaprieta V, Russiñol N, et al. . The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat Med. 2018;24(6):868-880. PubMed PMC
Pyrzynska B, Dwojak M, Zerrouqi A, et al. . FOXO1 promotes resistance of non-Hodgkin lymphomas to anti-CD20-based therapy. OncoImmunology. 2018;7(5):e1423183. PubMed PMC
Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta. 2011;1813(11):1978-1986. PubMed
Deng Y, Wang F, Hughes T, Yu J. FOXOs in cancer immunity: Knowns and unknowns. Semin Cancer Biol. 2018;50:53-64. PubMed PMC
Byrd JC, Brown JR, O’Brien S, et al. . RESONATE Investigators . Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213-223. PubMed PMC
Cervantes-Gomez F, Kumar Patel V, Bose P, Keating MJ, Gandhi V. Decrease in total protein level of Bruton’s tyrosine kinase during ibrutinib therapy in chronic lymphocytic leukemia lymphocytes. Leukemia. 2016;30(8):1803-1804. PubMed PMC
Cui B, Chen L, Zhang S, et al. . MicroRNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 2014;124(4):546-554. PubMed PMC
Ali AY, Wu X, Eissa N, et al. . Distinct roles for phosphoinositide 3-kinases γ and δ in malignant B cell migration. Leukemia. 2018;32(9):1958-1969. PubMed PMC
Roy NH, MacKay JL, Robertson TF, Hammer DA, Burkhardt JK. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci Signal. 2018;11(560):eaat3178. PubMed PMC
Thomas MS, Mitchell JS, DeNucci CC, Martin AL, Shimizu Y. The p110gamma isoform of phosphatidylinositol 3-kinase regulates migration of effector CD4 T lymphocytes into peripheral inflammatory sites. J Leukoc Biol. 2008;84(3):814-823. PubMed PMC
Martin AL, Schwartz MD, Jameson SC, Shimizu Y. Selective regulation of CD8 effector T cell migration by the p110 gamma isoform of phosphatidylinositol 3-kinase. J Immunol. 2008;180(4):2081-2088. PubMed
Zhang X, Gan L, Pan H, et al. . Phosphorylation of serine 256 suppresses transactivation by FKHR (FOXO1) by multiple mechanisms. Direct and indirect effects on nuclear/cytoplasmic shuttling and DNA binding. J Biol Chem. 2002;277(47):45276-45284. PubMed
Brunet A, Bonni A, Zigmond MJ, et al. . Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96(6):857-868. PubMed
Xiao W, Dong G, Pacios S, et al. . FOXO1 deletion reduces dendritic cell function and enhances susceptibility to periodontitis. Am J Pathol. 2015;185(4):1085-1093. PubMed PMC
Trinh DL, Scott DW, Morin RD, et al. . Analysis of FOXO1 mutations in diffuse large B-cell lymphoma. Blood. 2013;121(18):3666-3674. PubMed PMC
Szydlowski M, Kiliszek P, Sewastianik T, et al. . FOXO1 activation is an effector of SYK and AKT inhibition in tonic BCR signal-dependent diffuse large B-cell lymphomas. Blood. 2016;127(6):739-748. PubMed
Aasrum M, Ødegård J, Sandnes D, Christoffersen T. The involvement of the docking protein Gab1 in mitogenic signalling induced by EGF and HGF in rat hepatocytes. Biochim Biophys Acta. 2013;1833(12):3286-3294. PubMed
Computational Design of Pore-Forming Peptides with Potent Antimicrobial and Anticancer Activities
In Vitro and In Vivo Models of CLL-T Cell Interactions: Implications for Drug Testing