Standardní kultivace nádorových buněčných linií ve 2D uspořádání je dobře zavedeným a finančně dostupným experimentálním mode-lem pro in vitro testování biologických účinků potenciálních protinádorových léčiv. 2D kultury však postrádají metabolické a proliferační gradienty, důležité buněčné interakce a signalizace, které jsou přítomné in vivo. 3D buněčné sféroidy zohledňují gradienty živin, kyslíku či odpadních metabolitů, důležitost interakcí mezi buňkami a extracelulární matrix a navozují tak situaci bližší reálným podmínkám. Bio-logické vlastnosti 3D sféroidů a jejich odpovědi na účinky léčiv se značně liší ve srovnání s 2D kulturami. Hodnocením protinádorových účinků potenciálních léčiv na 3D kulturách se zásadně zvyšuje šance na výběr farmakologicky relevantních struktur a snížit tak riziko neúspěchu v průběhu klinického testování.
Traditional cultivation of cancer cell lines in 2D arrangement is well established and affordable experimental model for in vitro testing of biological effects of potential anticancer drugs. However, 2D cultures lack metabolic and proliferative gradients, important cell interac-tions and signaling that are present in vivo. Within 3D spheroids the gradients of nutrients, oxygen or waste metabolites, the importance of interactions between the cells and the extracellular matrix are included, and thus 3D can better simulate in vivo tumor microenviro-ment. The biological properties of 3D spheroids and their responses to drug effects vary greatly compared to 2D cultures. The evaluation of anticancer drug effects on 3D spheroids increases the chances of selection of pharmacologically relevant structures and thus reduce clinical trial failure risk.
- Keywords
- solidní nádory,
- MeSH
- Models, Biological MeSH
- Spheroids, Cellular * physiology classification drug effects MeSH
- Humans MeSH
- Tumor Cells, Cultured cytology microbiology MeSH
- Neoplasms diagnostic imaging MeSH
- Drug Evaluation, Preclinical MeSH
- Antineoplastic Agents pharmacokinetics MeSH
- Cell Culture Techniques, Three Dimensional methods MeSH
- In Vitro Techniques methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Východiska: Primární lidské B buňky chronické lymfocytární leukemie (CLL) podléhají při kultivaci in vitro buněčné smrti, nicméně jejich přežití lze signifikantně prodloužit kontaktem se stromálními buňkami nebo přítomností specifických solubilních faktorů. Pro účely výzkumu chování CLL buněk jsme vytvořili 3D in vitro model, ve kterém bylo simulováno vhodné mikroprostředí pro CLL buňky umožňující studium mechanizmu jejich přežívání v dlouhodobé kultivaci. Materiál a metody: Naším cílem bylo, aby struktura scaffoldu byla geometricky podobná 3D morfologii kostní dřeně, která vyplňuje trabekulární kost, aby měl 3D scaffold dostatečně velký povrch pro zachycení buněk a zároveň velkou pórovitost pro buněčnou migraci a transport živin. Dalším požadavkem byla také alespoň částečná transparentnost potřebná pro pozorování buněčného modelu pomocí optických metod. Připravili jsme 3D scaffoldy z porózního hydrogelu poly (2-hydroxyetyl metakrylát) (pHEMA), poly (2-hydroxyetyl metakrylát-co-2-aminoetyl metakrylát) p (HEMA-co-AEMA) a p (HEMA-co-AEMA) modifikovaný s často používaným adhezním peptidem Arg-Gly-Asp (RGD). Všechny hydrogelové scaffoldy byly vyrobeny ve čtyřech velikostech pórů (125, 200, 300 a 350–450 μm). Scaffoldy byly testovány pomocí HS-5 buněčné linie odvozené z lidských stromálních buněk kostní dřeně a HEK293 buněčné linie odvozené z lidských embryonálních buněk ledvin. Výsledky: Hydrogelový scaffold p (HEMA-co-AEMA) modifikovaný adhezním peptidem Arg-Gly-Asp (RGD) s velikostí pórů 350–450 μm prokázal, že je vhodným systémem pro 3D kultivace buněk, neboť podporuje interakce mezi buňkami navzájem a také mezi buňkami a materiálem. Tento scaffold byl použit pro nasazení kultivace složené z HS-5 buněk a CLL buněk, které byly stimulovány pomocí ligandu CD40 a cytokinu IL-4. Viabilita CLL buněk byla vyšší v přítomnosti obou stimulátorů zároveň než v případě každého zvlášť. Závěr: Ukázali jsme, že technologie 3D scaffoldů je velmi dobře využitelná pro modelování mikrosystémů, kde se nádorové buňky chovají jako ve svém přirozeném mikroprostředí. Klíčová slova: hematoonkologie – leukemie – hydrogel – stromální buňky
Background: Primary human B cells chronic lymphocytic leukemia undergoes apoptosis, from which they can be rescued by contact with stromal cells or by the addition of specific soluble factor, when cultured in vitro. For research purposes of the behavior of CLL cells we created 3D in vitro model in which we simulated appropriate microenvironment for CLL cells to allow study the mechanism of survival of these cells in long-term cultivation. Material and Methods: Our aim was the scaffold structure to be geometrically similar to the 3D morphology of supporting bone marrow tissue in a trabecular bone; the 3D scaffold was also designed to conform to biocompatibility, sufficiently large surface area for cell attachment, high porosity for cell migration, proliferation and transport of nutrients. Another requirement was a partial transparency for inspection of cell model with optical techniques. We prepared 3D scaffolds from porous hydrogel poly (2-hydroxyethyl methacrylate) (pHEMA), poly (2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) p (HEMA-co-AEMA) and p (HEMA-co-AEMA) modified with frequently used cell adhesion peptide Arg-Gly-Asp (RGD). All hydrogel scaffolds were manufactured in four pore diameters (125, 200, 300 and 350–450 μm). Scaffolds were tested with human bone marrow stromal cell line HS-5 and human embryonic kidney cell line HEK293. Results: Hydrogel scaffold p (HEMA-co-AEMA) modified with adhesion peptide Arg-Gly-Asp (RGD) with pore diameter of 350–450 μm demonstrated that it is a convenient system for 3D cell cultivation, since it promotes interaction between the cells and also between the cells and the material. This scaffold was used for seeding of co-cultivation system of HS-5 cells with CLL-cells, which were stimulated through the CD40L signaling pathway as well as via the IL-4 pathway. Viability of B-CLL cells was higher in the presence of both stimulators than with each alone. Conclusions: We have shown that 3D scaffold technology is very useful for modeling of microsystems where the cancer cells behave like in their natural microenvironment. Key words: hematooncology – leukemia – hydrogel – stromal cells This work was supported by grant COST CZ LD15144 “Cellular and acellular grounds for regeneration of bones and teeth” awarded by the Ministry of Education, Youth and Sport of the Czech Republic. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 6. 3. 2017 Accepted: 26. 3. 2017
- MeSH
- Biocompatible Materials MeSH
- Models, Biological MeSH
- Leukemia, Lymphocytic, Chronic, B-Cell pathology MeSH
- Hydrogels * MeSH
- Culture Techniques methods MeSH
- Mesenchymal Stem Cells MeSH
- Tumor Cells, Cultured * MeSH
- Tumor Microenvironment MeSH
- In Vitro Techniques MeSH
- Tissue Scaffolds * MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Additive manufacturing, also called 3D printing, is an effective method for preparing scaffolds with defined structure and porosity. The disadvantage of the technique is the excessive smoothness of the printed fibers, which does not support cell adhesion. In the present study, a 3D printed scaffold was combined with electrospun classic or structured nanofibers to promote cell adhesion. Structured nanofibers were used to improve the infiltration of cells into the scaffold. Electrospun layers were connected to 3D printed fibers by gluing, thus enabling the fabrication of scaffolds with unlimited thickness. The composite 3D printed/nanofibrous scaffolds were seeded with primary chondrocytes and tested in vitro for cell adhesion, proliferation and differentiation. The experiment showed excellent cell infiltration, viability, and good cell proliferation. On the other hand, partial chondrocyte dedifferentiation was shown. Other materials supporting chondrogenic differentiation will be investigated in future studies.
- MeSH
- Printing, Three-Dimensional * MeSH
- Cell Adhesion physiology MeSH
- Cell Differentiation physiology MeSH
- Chondrocytes cytology MeSH
- Cells, Cultured physiology MeSH
- Humans MeSH
- Nanofibers * chemistry MeSH
- Cell Proliferation physiology MeSH
- Tissue Engineering methods MeSH
- Tissue Scaffolds * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In the rapidly evolving landscape of cell biology and biomedical research, three-dimensional (3D) cell culture has contributed not only to the diversification of experimental tools available but also to their improvement toward greater physiological relevance. 3D cell culture has emerged as a revolutionary technique that bridges the long-standing gap between traditional two-dimensional (2D) cell culture and the complex microenvironments found in living organisms. By providing conditions for establishing critical features of in vivo environment, such as cell-cell and cell-extracellular matrix interactions, 3D cell culture enables proper tissue-like architecture and differentiated function of cells. Since the early days of 3D cell culture in the 1970s, the field has witnessed remarkable progress, with groundbreaking discoveries, novel methodologies, and transformative applications. One particular 3D cell culture technique has caught the attention of many scientists and has experienced an unprecedented boom and enthusiastic application in both basic and translational research over the past decade - the organoid technology. This book chapter provides an introduction to the fundamental concepts of 3D cell culture including organoids, an overview of 3D cell culture techniques, and an overview of methodological- and protocol-oriented chapters in the book 3D Cell Culture.
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
- MeSH
- Printing, Three-Dimensional MeSH
- Bioprinting methods MeSH
- Cell Culture Techniques MeSH
- Hydrogels * chemistry MeSH
- Drug Delivery Systems MeSH
- Humans MeSH
- Cell Culture Techniques, Three Dimensional methods MeSH
- Tissue Engineering * methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 μm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, β-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.
- MeSH
- Cell Differentiation * physiology MeSH
- Cell Culture Techniques methods MeSH
- Cell Line MeSH
- Spheroids, Cellular * metabolism MeSH
- Mice MeSH
- Neurons metabolism MeSH
- Prion Diseases * metabolism pathology MeSH
- Prions metabolism MeSH
- Cell Culture Techniques, Three Dimensional methods MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The consideration of human and environmental exposure to dendrimers, including cytotoxicity, acute toxicity, and cell and tissue accumulation, is essential due to their significant potential for various biomedical applications. This study aimed to evaluate the biodistribution and toxicity of a novel methoxyphenyl phosphonium carbosilane dendrimer, a potential mitochondria-targeting vector for cancer therapeutics, in 2D and 3D cancer cell cultures and zebrafish embryos. We assessed its cytotoxicity (via MTT, ATP, and Spheroid growth inhibition assays) and cellular biodistribution. The dendrimer cytotoxicity was higher in cancer cells, likely due to its specific targeting to the mitochondrial compartment. In vivo studies using zebrafish demonstrated dendrimer distribution within the vascular and gastrointestinal systems, indicating a biodistribution profile that may be beneficial for systemic therapeutic delivery strategies. The methoxyphenyl phosphonium carbosilane dendrimer shows promise for applications in cancer cell delivery, but additional studies are required to confirm these findings using alternative labelling methods and more physiologically relevant models. Our results contribute to the growing body of evidence supporting the potential of carbosilane dendrimers as vectors for cancer therapeutics.
Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
- MeSH
- Carcinoma, Pancreatic Ductal * pathology genetics metabolism MeSH
- Precision Medicine * methods MeSH
- Humans MeSH
- Pancreatic Neoplasms * pathology genetics MeSH
- Cell Culture Techniques, Three Dimensional methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Computed tomography (CT) is an effective diagnostic modality for three-dimensional imaging of bone structures, including the geometry of their defects. The aim of the study was to create and optimize 3D geometrical and real plastic models of the distal femoral component of the knee with joint surface defects. Input data included CT images of stifle joints in twenty miniature pigs with iatrogenic osteochondrosis-like lesions in medial femoral condyle of the left knee. The animals were examined eight and sixteen weeks after surgery. Philips MX 8000 MX and View workstation were used for scanning parallel plane cross section slices and Cartesian discrete volume creation. On the average, 100 slices were performed in each stifle joint. Slice matrices size was 512 x 512 with slice thickness of 1 mm. Pixel (voxel) size in the slice plane was 0.5 mm (with average accuracy of +/-0.5 mm and typical volume size 512 x 512 x 100 voxels). Three-dimensional processing of CT data and 3D geometrical modelling, using interactive computer graphic system MediTools formerly developed here, consisted of tissue segmentation (raster based method combination and 5 % of manual correction), vectorization by the marching-cubes method, smoothing and decimation. Stifle- joint CT images of three individuals of different body size (small, medium and large) were selected to make the real plastic models of their distal femurs from plaster composite using rapid prototyping technology of Zcorporation. Accuracy of the modeling was +/- 0.5 mm. The real plastic models of distal femurs can be used as a template for developing custom made press and fit scaffold implants seeded with mesenchymal stem cells that might be subsequently implanted into iatrogenic joint surface defects for articular cartilage-repair enhancement.
- MeSH
- Models, Anatomic * MeSH
- Computer-Aided Design MeSH
- Femur radiography MeSH
- Stifle radiography MeSH
- Cells, Cultured MeSH
- Mesenchymal Stem Cells * MeSH
- Swine, Miniature MeSH
- Disease Models, Animal MeSH
- Osteochondritis radiography MeSH
- Tomography, X-Ray Computed * MeSH
- Swine MeSH
- Prosthesis Design MeSH
- Radiographic Image Interpretation, Computer-Assisted MeSH
- Tissue Engineering * MeSH
- Tissue Scaffolds * MeSH
- Imaging, Three-Dimensional * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH