i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29378012
PubMed Central
PMC5829569
DOI
10.1093/nar/gky035
PII: 4824838
Knihovny.cz E-zdroje
- MeSH
- adenin analogy a deriváty chemie MeSH
- cytosin chemie MeSH
- DNA chemie MeSH
- lidé MeSH
- pentoxyl analogy a deriváty chemie MeSH
- poškození DNA MeSH
- telomery chemie MeSH
- uracil chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5-hydroxymethyluracil MeSH Prohlížeč
- 8-hydroxyadenine MeSH Prohlížeč
- adenin MeSH
- cytosin MeSH
- DNA MeSH
- pentoxyl MeSH
- uracil MeSH
i-Motif (iM) is a four stranded DNA structure formed by cytosine-rich sequences, which are often present in functionally important parts of the genome such as promoters of genes and telomeres. Using electronic circular dichroism and UV absorption spectroscopies and electrophoretic methods, we examined the effect of four naturally occurring DNA base lesions on the folding and stability of the iM formed by the human telomere DNA sequence (C3TAA)3C3T. The results demonstrate that the TAA loop lesions, the apurinic site and 8-oxoadenine substituting for adenine, and the 5-hydroxymethyluracil substituting for thymine only marginally disturb the formation of iM. The presence of uracil, which is formed by enzymatic or spontaneous deamination of cytosine, shifts iM formation towards substantially more acidic pH values and simultaneously distinctly reduces iM stability. This effect depends on the position of the damage sites in the sequence. The results have enabled us to formulate additional rules for iM formation.
Zobrazit více v PubMed
Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993; 362:709–715. PubMed
von Sonntag C. New aspects in the free-radical chemistry of pyrimidine nucleobases. Free Radic. Res. Commun. 1987; 2:217–224. PubMed
Konvalinova H., Dvorakova Z., Renciuk D., Bednarova K., Kejnovska I., Trantirek L., Vorlickova M., Sagi J.. Diverse effects of naturally occurring base lesions on the structure and stability of the human telomere DNA quadruplex. Biochimie. 2015; 118:15–25. PubMed
Sagi J. G-quadruplexes incorporating modified constituents: a review. J. Biomol. Struct. Dyn. 2014; 32:477–511. PubMed
Sagi J. Designing G-quadruplex topologies by focusing on sequence modifications. G-Quadruplex Structures, Formation and Role in Biology. 2016; NY: Nova Science Publishers, Inc.
Gehring K., Leroy J.L., Gueron M.. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993; 363:561–565. PubMed
Gueron M., Leroy J.L.. The i-motif in nucleic acids. Curr. Opin. Struct. Biol. 2000; 10:326–331. PubMed
Day H.A., Pavlou P., Waller Z.A.. i-Motif DNA: structure, stability and targeting with ligands. Bioorg. Med. Chem. 2014; 22:4407–4418. PubMed
Brazier J.A., Shah A., Brown G.D.. i-Motif formation in gene promoters: unusually stable formation in sequences complementary to known G-quadruplexes. Chem. Commun. (Camb.). 2012; 48:10739–10741. PubMed
Sun D., Hurley L.H.. The importance of negative superhelicity in inducing the formation of G-quadruplex and i-motif structures in the c-Myc promoter: Implications for drug targeting and control of gene expression. J. Med. Chem. 2009; 52:2863–2874. PubMed PMC
Simonsson T., Pribylova M., Vorlickova M.. A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures. Biochem. Biophys. Res. Commun. 2000; 278:158–166. PubMed
Skolakova P., Foldynova-Trantirkova S., Bednarova K., Fiala R., Vorlickova M., Trantirek L.. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA. Nucleic. Acids. Res. 2015; 43:4733–4745. PubMed PMC
Bhavsar-Jog Y.P., Van Dornshuld E., Brooks T.A., Tschumper G.S., Wadkins R.M.. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry. 2014; 53:1586–1594. PubMed PMC
Selvam S., Mandal S., Mao H.. Quantification of chemical and mechanical effects on the formation of the G-quadruplex and i-motif in duplex DNA. Biochemistry. 2017; 56:4616–4625. PubMed
Cui J., Waltman P., Le V.H., Lewis E.A.. The effect of molecular crowding on the stability of human c-MYC promoter sequence i-motif at neutral pH. Molecules. 2013; 18:12751–12767. PubMed PMC
Dong Y.C., Yang Z.Q., Liu D.S.. DNA nanotechnology based on i-motif structures. Acc. Chem. Res. 2014; 47:1853–1860. PubMed
Nesterova I.V., Nesterov E.E.. Rational design of highly responsive pH sensors based on DNA i-motif. J. Am. Chem. Soc. 2014; 136:8843–8846. PubMed
Benabou S., Avino A., Eritja R., Gonzalez C., Gargallo R.. Fundamental aspects of the nucleic acid i-motif structures. RSC Adv. 2014; 4:26956–26980.
Yang B., Rodgers M.T.. Base-pairing energies of protonated nucleoside base pairs of dCyd and m(5)dCyd: implications for the stability of DNA i-motif conformations. J. Am. Soc. Mass Spectrom. 2015; 26:1394–1403. PubMed
Xu B., Devi G., Shao F.. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org. Biomol. Chem. 2015; 13:5646–5651. PubMed
Canalia M., Leroy J.L.. Structure, internal motions and association-dissociation kinetics of the i-motif dimer of d(5mCCTCACTCC). Nucleic Acids Res. 2005; 33:5471–5481. PubMed PMC
Han X., Leroy J.L., Gueron M.. An intramolecular i-motif: the solution structure and base-pair opening kinetics of d(5mCCT3CCT3ACCT3CC). J. Mol. Biol. 1998; 278:949–965. PubMed
Nonin S., Phan A.T., Leroy J.L.. Solution structure and base pair opening kinetics of the i-motif dimer of d(5mCCTTTACC): a noncanonical structure with possible roles in chromosome stability. Structure. 1997; 5:1231–1246. PubMed
Phan A.T., Leroy J.L.. Intramolecular i-motif structures of telomeric DNA. J. Biomol. Struct. Dyn. 2000; 17(Suppl. 1):245–251. PubMed
Lannes L., Halder S., Krishnan Y., Schwalbe H.. Tuning the pH response of i-motif DNA oligonucleotides. ChemBioChem. 2015; 16:1647–1656. PubMed
Reilly S.M., Morgan R.K., Brooks T.A., Wadkins R.M.. Effect of interior loop length on the thermal stability and pK(a) of i-motif DNA. Biochemistry. 2015; 54:1364–1370. PubMed PMC
Fujii T., Sugimoto N.. Loop nucleotides impact the stability of intrastrand i-motif structures at neutral pH. Phys. Chem. Chem. Phys. 2015; 17:16719–16722. PubMed
Gurung S.P., Schwarz C., Hall J.P., Cardin C.J., Brazier J.A.. The importance of loop length on the stability of i-motif structures. Chem. Commun. (Camb.). 2015; 51:5630–5632. PubMed PMC
Lieblein A.L., Furtig B., Schwalbe H.. Optimizing the kinetics and thermodynamics of DNA i-motif folding. ChemBioChem. 2013; 14:1226–1230. PubMed
McKim M., Buxton A., Johnson C., Metz A., Sheardy R.D.. Loop sequence context influences the formation and stability of the i-motif for DNA oligomers of sequence (CCCXXX)4, where X = A and/or T, under slightly acidic conditions. J. Phys. Chem. B. 2016; 120:7652–7661. PubMed
Benabou S., Garavis M., Lyonnais S., Eritja R., Gonzalez C., Gargallo R.. Understanding the effect of the nature of the nucleobase in the loops on the stability of the i-motif structure. Phys. Chem. Chem. Phys. 2016; 18:7997–8004. PubMed
Lee I.J., Kim B.H.. Monitoring i-motif transitions through the exciplex emission of a fluorescent probe incorporating two (Py)A units. Chem. Commun. (Camb.). 2012; 48:2074–2076. PubMed
Pasternak A., Wengel J.. Modulation of i-motif thermodynamic stability by the introduction of UNA (unlocked nucleic acid) monomers. Bioorg. Med. Chem. Lett. 2011; 21:752–755. PubMed
Perlikova P., Karlsen K.K., Pedersen E.B., Wengel J.. Unlocked nucleic acids with a pyrene-modified uracil: synthesis, hybridization studies, fluorescent properties and i-motif stability. ChemBioChem. 2014; 15:146–156. PubMed
Vorlickova M., Tomasko M., Sagi A.J., Bednarova K., Sagi J.. 8-Oxoguanine in a quadruplex of the human telomere DNA sequence. FEBS J. 2012; 279:29–39. PubMed
Skolakova P., Bednarova K., Vorlickova M., Sagi J.. Quadruplexes of human telomere dG(3)(TTAG(3))(3) sequences containing guanine abasic sites. Biochem. Biophys. Res. Commun. 2010; 399:203–208. PubMed
Pfaffeneder T., Spada F., Wagner M., Brandmayr C., Laube S.K., Eisen D., Truss M., Steinbacher J., Hackner B., Kotljarova O. et al. . Tet oxidizes thymine to 5-hydroxymethyluracil in mouse embryonic stem cell DNA. Nat. Chem. Biol. 2014; 10:574–581. PubMed
Bransteitter R., Pham P., Scharff M.D., Goodman M.F.. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:4102–4107. PubMed PMC
Schutsky E.K., Nabel C.S., Davis A.K.F., DeNizio J.E., Kohli R.M.. APOBEC3A efficiently deaminates methylated, but not TET-oxidized, cytosine bases in DNA. Nucleic. Acids. Res. 2017; 45:7655–7665. PubMed PMC
Gray D.M., Hung S.H., Johnson K.H.. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995; 246:19–34. PubMed
Mergny J.L., Lacroix L.. Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–537. PubMed
Manzini G., Yathindra N., Xodo L.E.. Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. Nucleic. Acids. Res. 1994; 22:4634–4640. PubMed PMC
Sagi J. In what ways do synthetic nucleotides and natural base lesions alter the structural stability of G-quadruplex nucleic acids. J. Nucleic. Acids. 2017; 2017:1641845. PubMed PMC
Aggrawal M., Joo H., Liu W.B., Tsai J., Xue L.. 8-Oxo-7,8-dihydrodeoxyadenosine: The first example of a native DNA lesion that stabilizes human telomeric G-quadruplex DNA. Biochem. Biophys. Res. Commun. 2012; 421:671–677. PubMed
Babinsky M., Fiala R., Kejnovska I., Bednarova K., Marek R., Sagi J., Sklenar V., Vorlickova M.. Loss of loop adenines alters human telomere d AG(3)(TTAG(3))(3) quadruplex folding. Nucleic. Acids. Res. 2014; 42:14031–14041. PubMed PMC
Virgilio A., Esposito V., Mayol L., Giancola C., Petraccone L., Galeone A.. The oxidative damage to the human telomere: effects of 5-hydroxymethyl-2′-deoxyuridine on telomeric G-quadruplex structures. Org. Biomol. Chem. 2015; 13:7421–7429. PubMed
Kejnovska I., Bednarova K., Renciuk D., Dvorakova Z., Skolakova P., Trantirek L., Fiala R., Vorlickova M., Sagi J.. Clustered abasic lesions profoundly change the structure and stability of human telomeric G-quadruplexes. Nucleic Acids Res. 2017; 45:4294–4305. PubMed PMC
Virgilio A., Petraccone L., Esposito V., Citarella G., Giancola C., Galeone A.. The abasic site lesions in the human telomeric sequence d[TA(G(3)T(2)A)(3)G(3)]: a thermodynamic point of view. Biochim. Biophys. Acta. 2012; 1820:2037–2043. PubMed
Phan A.T., Gueron M., Leroy J.L.. The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere. J. Mol. Biol. 2000; 299:123–144. PubMed
Esmaili N., Leroy J.L.. i-Motif solution structure and dynamics of the d(AACCCC) and d(CCCCAA) tetrahymena telomeric repeats. Nucleic. Acids. Res. 2005; 33:213–224. PubMed PMC
Lieblein A.L., Buck J., Schlepckow K., Fürtig B., Schwalbe H.. Time‐resolved NMR spectroscopic studies of DNA i‐motif folding reveal kinetic partitioning. Angew. Chem. Int. Ed. Engl. 2012; 51:250–253. PubMed
Tomasko M., Vorlickova M., Sagi J.. Substitution of adenine for guanine in the quadruplex-forming human telomere DNA sequence G(3)(T(2)AG(3))(3). Biochimie. 2009; 91:171–179. PubMed
Kang H.J., Kendrick S., Hecht S.M., Hurley L.H.. The transcriptional complex between the BCL2 i-motif and hnRNP LL is a molecular switch for control of gene expression that can be modulated by small molecules. J. Am. Chem. Soc. 2014; 136:4172–4185. PubMed PMC
Brown R.V., Wang T., Chappeta V.R., Wu G., Onel B., Chawla R., Quijada H., Camp S.M., Chiang E.T., Lassiter Q.R. et al. . The consequences of overlapping G-quadruplexes and i-motifs in the platelet-derived growth factor receptor beta core promoter nuclease hypersensitive element can explain the unexpected effects of mutations and provide opportunities for selective targeting of both structures by small molecules to downregulate gene expression. J. Am. Chem. Soc. 2017; 139:7456–7475. PubMed PMC
Renciuk D., Rynes J., Kejnovska I., Foldynova-Trantirkova S., Andang M., Trantirek L., Vorlickova M.. G-quadruplex formation in the Oct4 promoter positively regulates Oct4 expression. Biochim. Biophys. Acta. 2017; 1860:175–183. PubMed
Wright E.P., Huppert J.L., Waller Z.A.E.. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017; 45:2951–2959. PubMed PMC
Kaiser C.E., Van Ert N.A., Agrawal P., Chawla R., Yang D., Hurley L.H.. Insight into the complexity of the i-motif and G-quadruplex DNA structures formed in the KRAS promoter and subsequent drug-induced gene repression. J. Am. Chem. Soc. 2017; 139:8522–8536. PubMed PMC
Dhakal S., Yu Z.B., Konik R., Cui Y.X., Koirala D., Mao H.B.. G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys. J. 2012; 102:2575–2584. PubMed PMC
DNA i-motif formation at neutral pH is driven by kinetic partitioning
Systematic investigation of sequence requirements for DNA i-motif formation