Systematic investigation of sequence requirements for DNA i-motif formation

. 2019 Mar 18 ; 47 (5) : 2177-2189.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30715498

The formation of intercalated motifs (iMs) - secondary DNA structures based on hemiprotonated C.C+ pairs in suitable cytosine-rich DNA sequences, is reflected by typical changes in CD and UV absorption spectra. By means of spectroscopic methods, electrophoresis, chemical modifications and other procedures, we characterized iM formation and stability in sequences with different cytosine block lengths interrupted by various numbers and types of nucleotides. Particular attention was paid to the formation of iMs at pH conditions close to neutral. We identified the optimal conditions and minimal requirements for iM formation in DNA sequences, and addressed gaps and inaccurate data interpretations in existing studies to specify principles of iM formation and modes of their folding.

Zobrazit více v PubMed

Huppert J.L., Balasubramanian S.. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005; 33:2908–2916. PubMed PMC

Brooks T.A., Kendrick S., Hurley L.. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J. 2010; 277:3459–3469. PubMed PMC

Neidle S., Balasubramanian S.. Quadruplex Nucleic Acids. 2006; Cambridge: Royal Society of Chemistry.

Chaires J.B., Graves D.. Graves D. Topics in Current Chemistry. 2013; 330:Berlin Heidelberg: Springer-Verlag.

Gehring K., Leroy J.L., Gueron M.. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993; 363:561–565. PubMed

Gueron M., Leroy J.L.. The i-motif in nucleic acids. Curr. Opin. Struct. Biol. 2000; 10:326–331. PubMed

Han X., Leroy J.L., Gueron M.. An intramolecular i-motif: the solution structure and base-pair opening kinetics of d(5mCCT3CCT3ACCT3CC). J. Mol. Biol. 1998; 278:949–965. PubMed

Phan A.T., Leroy J.L.. Intramolecular i-motif structures of telomeric DNA. J. Biomol. Struct. Dyn. 2000; 17(Suppl. 1):245–251. PubMed

Malliavin T.E., Gau J., Snoussi K., Leroy J.L.. Stability of the I-motif structure is related to the interactions between phosphodiester backbones. Biophys. J. 2003; 84:3838–3847. PubMed PMC

Nonin-Lecomte S., Leroy J.L.. Structure of a C-rich strand fragment of the human centromeric satellite III: a pH-dependent intercalation topology. J. Mol. Biol. 2001; 309:491–506. PubMed

Liu D.S., Balasubramanian S.. A proton-fuelled DNA nanomachine. Angew. Chem.-Int. Edit. 2003; 42:5734–5736. PubMed

Ghodke H.R., Krishnan R., Vignesh K., Kumar G.V.P., Narayana C., Krishnan Y.. The I-Tetraplex building block: Rational design and controlled fabrication of robust 1D DNA scaffolds through non-Watson-Crick interactions. Angew. Chem.-Int. Ed. 2007; 46:2646–2649. PubMed

Li T., Famulok M.. i-Motif-programmed functionalization of DNA nanocircles. J. Am. Chem. Soc. 2013; 135:1593–1599. PubMed

Dong Y.C., Yang Z.Q., Liu D.S.. DNA nanotechnology based on i-motif structures. Acc. Chem. Res. 2014; 47:1853–1860. PubMed

Nesterova I.V., Nesterov E.E.. Rational design of highly responsive pH sensors based on DNA i-Motif. J. Am. Chem. Soc. 2014; 136:8843–8846. PubMed

Modi S., Swetha M.G., Goswami D., Gupta G.D., Mayor S., Krishnan Y.. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 2009; 4:325–330. PubMed

Kendrick S., Kang H.J., Alam M.P., Madathil M.M., Agrawal P., Gokhale V., Yang D.Z., Hecht S.M., Hurley L.H.. The dynamic character of the BCL2 promoter i-Motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. J. Am. Chem. Soc. 2014; 136:4161–4171. PubMed PMC

Chen X., Zhou X., Han T., Wu J., Zhang J., Guo S.. Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots. ACS Nano. 2013; 7:531–537. PubMed

Rajendran A., Nakano S., Sugimoto N.. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem. Commun. 2010; 46:1299–1301. PubMed

Bhavsar-Jog Y.P., Van Dornshuld E., Brooks T.A., Tschumper G.S., Wadkins R.M.. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry. 2014; 53:1586–1594. PubMed PMC

Pramanik S., Nagatoishi S., Sugimoto N.. DNA tetraplex structure formation from human telomeric repeat motif (TTAGGG):(CCCTAA) in nanocavity water pools of reverse micelles. Chem. Commun. 2012; 48:4815–4817. PubMed

Day H.A., Huguin C., Waller Z.A.. Silver cations fold i-motif at neutral pH. Chem. Commun. (Camb.). 2013; 49:7696–7698. PubMed

Saxena S., Joshi S., Shankaraswamy J., Tyagi S., Kukreti S.. Magnesium and molecular crowding of the cosolutes stabilize the i-motif structure at physiological pH. Biopolymers. 2017; 107:e23018. PubMed

Day H.A., Pavlou P., Waller Z.A.. i-Motif DNA: structure, stability and targeting with ligands. Bioorg. Med. Chem. 2014; 22:4407–4418. PubMed

Fernandez S., Eritja R., Avino A., Jaumot J., Gargallo R.. Influence of pH, temperature and the cationic porphyrin TMPyP4 on the stability of the i-motif formed by the 5 ‘-(C(3)TA(2))(4)-3 ’ sequence of the human telomere. Int. J. Biol. Macromol. 2011; 49:729–736. PubMed

Abou Assi H., Garavís M., González C., Damha M.J.. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res. 2018; 46:8038–8056. PubMed PMC

Lannes L., Halder S., Krishnan Y., Schwalbe H.. Tuning the pH response of i-motif DNA oligonucleotides. ChemBioChem. 2015; 16:1647–1656. PubMed

Gurung S.P., Schwarz C., Hall J.P., Cardin C.J., Brazier J.A.. The importance of loop length on the stability of i-motif structures. Chem. Commun. (Camb.). 2015; 51:5630–5632. PubMed PMC

Reilly S.M., Morgan R.K., Brooks T.A., Wadkins R.M.. Effect of interior loop length on the thermal stability and pK(a) of i-motif DNA. Biochemistry. 2015; 54:1364–1370. PubMed PMC

Fleming A.M., Ding Y., Rogers R.A., Zhu J., Zhu J., Burton A.D., Carlisle C.B., Burrows C.J.. 4n-1 is a “Sweet Spot” in DNA i-Motif folding of 2′-Deoxycytidine homopolymers. J. Am. Chem. Soc. 2017; 139:4682–4689. PubMed

Fleming A.M., Stewart K.M., Eyring G.M., Ball T.E., Burrows C.J.. Unraveling the 4n-1 rule for DNA i-motif stability: base pairs vs. loop lengths. Org. Biomol. Chem. 2018; 16:4537–4546. PubMed

McKim M., Buxton A., Johnson C., Metz A., Sheardy R.D.. Loop sequence context influences the formation and stability of the i-motif for DNA oligomers of Sequence (CCCXXX)4, where X = A and/or T, under slightly acidic conditions. J. Phys. Chem. B. 2016; 120:7652–7661. PubMed

Benabou S., Garavis M., Lyonnais S., Eritja R., Gonzalez C., Gargallo R.. Understanding the effect of the nature of the nucleobase in the loops on the stability of the i-motif structure. Phys. Chem. Chem. Phys. 2016; 18:7997–8004. PubMed

Lieblein A.L., Furtig B., Schwalbe H.. Optimizing the kinetics and thermodynamics of DNA i-motif folding. ChemBioChem. 2013; 14:1226–1230. PubMed

Manzini G., Yathindra N., Xodo L.E.. Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. Nucleic Acids Res. 1994; 22:4634–4640. PubMed PMC

Mergny J.-L., Lacroix L., Han X., Leroy J.-L., Helene C.. Intramolecular folding of pyrimidine oligodeoxynucleotides into an i-DNA motif. J. Am. Chem. Soc. 1995; 117:4797–4803.

Wright E.P., Huppert J.L., Waller Z.A.E.. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017; 45:2951–2959. PubMed PMC

Cui Y., Koirala D., Kang H., Dhakal S., Yangyuoru P., Hurley L.H., Mao H.. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL. Nucleic Acids Res. 2014; 42:5755–5764. PubMed PMC

Kang H.J., Kendrick S., Hecht S.M., Hurley L.H.. The transcriptional complex between the BCL2 i-motif and hnRNP LL is a molecular switch for control of gene expression that can be modulated by small molecules. J. Am. Chem. Soc. 2014; 136:4172–4185. PubMed PMC

Dzatko S., Krafcikova M., Hansel-Hertsch R., Fessl T., Fiala R., Loja T., Krafcik D., Mergny J.L., Foldynova-Trantirkova S., Trantirek L.. Evaluation of the stability of DNA i-Motifs in the nuclei of living mammalian cells. Angew. Chem.-Int. Ed. 2018; 57:2165–2169. PubMed PMC

Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D.. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018; 10:631–637. PubMed

Gray D.M., Hung S.H., Johnson K.H.. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995; 246:19–34. PubMed

Mergny J.L., Lacroix L.. Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–537. PubMed

Ross S.A., Burrows C.J.. Cytosine-specific chemical probing of DNA using bromide and monoperoxysulfate. Nucleic Acids Res. 1996; 24:5062–5063. PubMed PMC

Guo K., Pourpak A., Beetz-Rogers K., Gokhale V., Sun D., Hurley L.H.. Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene. J. Am. Chem. Soc. 2007; 129:10220–10228. PubMed PMC

Del Villar-Guerra R., Trent J.O., Chaires J.B.. G-Quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. (Int. Ed. Engl.). 2018; 57:7171–7175. PubMed PMC

Fujii T., Sugimoto N.. Loop nucleotides impact the stability of intrastrand i-motif structures at neutral pH. Phys. Chem. Chem. Phys. 2015; 17:16719–16722. PubMed

Dvorakova Z., Renciuk D., Kejnovska I., Skolakova P., Bednarova K., Sagi J., Vorlickova M.. i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions. Nucleic Acids Res. 2018; 46:1624–1634. PubMed PMC

Lieblein A.L., Buck J., Schlepckow K., Fürtig B., Schwalbe H.. Time‐resolved NMR spectroscopic studies of DNA i‐motif folding reveal kinetic partitioning. Angew. Chem. Int. Ed. Engl. 2012; 51:250–253. PubMed

Rogers R.A., Fleming A.M., Burrows C.J.. Unusual isothermal hysteresis in DNA i-Motif pH Transitions: a study of the RAD17 promoter sequence. Biophys. J. 2018; 114:1804–1815. PubMed PMC

Wu S., Wang X., Ye X., Zhang G.. pH-Induced conformational change and dimerization of DNA chains investigated by analytical ultracentrifugation. J. Phys. Chem. B. 2013; 117:11541–11547. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...