Systematic investigation of sequence requirements for DNA i-motif formation
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30715498
PubMed Central
PMC6412112
DOI
10.1093/nar/gkz046
PII: 5305265
Knihovny.cz E-zdroje
- MeSH
- cytosin chemie metabolismus MeSH
- DNA chemie metabolismus MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- konformace nukleové kyseliny * MeSH
- nukleotidové motivy * MeSH
- párování bází MeSH
- sekvence nukleotidů MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytosin MeSH
- DNA MeSH
The formation of intercalated motifs (iMs) - secondary DNA structures based on hemiprotonated C.C+ pairs in suitable cytosine-rich DNA sequences, is reflected by typical changes in CD and UV absorption spectra. By means of spectroscopic methods, electrophoresis, chemical modifications and other procedures, we characterized iM formation and stability in sequences with different cytosine block lengths interrupted by various numbers and types of nucleotides. Particular attention was paid to the formation of iMs at pH conditions close to neutral. We identified the optimal conditions and minimal requirements for iM formation in DNA sequences, and addressed gaps and inaccurate data interpretations in existing studies to specify principles of iM formation and modes of their folding.
Zobrazit více v PubMed
Huppert J.L., Balasubramanian S.. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005; 33:2908–2916. PubMed PMC
Brooks T.A., Kendrick S., Hurley L.. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J. 2010; 277:3459–3469. PubMed PMC
Neidle S., Balasubramanian S.. Quadruplex Nucleic Acids. 2006; Cambridge: Royal Society of Chemistry.
Chaires J.B., Graves D.. Graves D. Topics in Current Chemistry. 2013; 330:Berlin Heidelberg: Springer-Verlag.
Gehring K., Leroy J.L., Gueron M.. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993; 363:561–565. PubMed
Gueron M., Leroy J.L.. The i-motif in nucleic acids. Curr. Opin. Struct. Biol. 2000; 10:326–331. PubMed
Han X., Leroy J.L., Gueron M.. An intramolecular i-motif: the solution structure and base-pair opening kinetics of d(5mCCT3CCT3ACCT3CC). J. Mol. Biol. 1998; 278:949–965. PubMed
Phan A.T., Leroy J.L.. Intramolecular i-motif structures of telomeric DNA. J. Biomol. Struct. Dyn. 2000; 17(Suppl. 1):245–251. PubMed
Malliavin T.E., Gau J., Snoussi K., Leroy J.L.. Stability of the I-motif structure is related to the interactions between phosphodiester backbones. Biophys. J. 2003; 84:3838–3847. PubMed PMC
Nonin-Lecomte S., Leroy J.L.. Structure of a C-rich strand fragment of the human centromeric satellite III: a pH-dependent intercalation topology. J. Mol. Biol. 2001; 309:491–506. PubMed
Liu D.S., Balasubramanian S.. A proton-fuelled DNA nanomachine. Angew. Chem.-Int. Edit. 2003; 42:5734–5736. PubMed
Ghodke H.R., Krishnan R., Vignesh K., Kumar G.V.P., Narayana C., Krishnan Y.. The I-Tetraplex building block: Rational design and controlled fabrication of robust 1D DNA scaffolds through non-Watson-Crick interactions. Angew. Chem.-Int. Ed. 2007; 46:2646–2649. PubMed
Li T., Famulok M.. i-Motif-programmed functionalization of DNA nanocircles. J. Am. Chem. Soc. 2013; 135:1593–1599. PubMed
Dong Y.C., Yang Z.Q., Liu D.S.. DNA nanotechnology based on i-motif structures. Acc. Chem. Res. 2014; 47:1853–1860. PubMed
Nesterova I.V., Nesterov E.E.. Rational design of highly responsive pH sensors based on DNA i-Motif. J. Am. Chem. Soc. 2014; 136:8843–8846. PubMed
Modi S., Swetha M.G., Goswami D., Gupta G.D., Mayor S., Krishnan Y.. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat. Nanotechnol. 2009; 4:325–330. PubMed
Kendrick S., Kang H.J., Alam M.P., Madathil M.M., Agrawal P., Gokhale V., Yang D.Z., Hecht S.M., Hurley L.H.. The dynamic character of the BCL2 promoter i-Motif provides a mechanism for modulation of gene expression by compounds that bind selectively to the alternative DNA hairpin structure. J. Am. Chem. Soc. 2014; 136:4161–4171. PubMed PMC
Chen X., Zhou X., Han T., Wu J., Zhang J., Guo S.. Stabilization and induction of oligonucleotide i-motif structure via graphene quantum dots. ACS Nano. 2013; 7:531–537. PubMed
Rajendran A., Nakano S., Sugimoto N.. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem. Commun. 2010; 46:1299–1301. PubMed
Bhavsar-Jog Y.P., Van Dornshuld E., Brooks T.A., Tschumper G.S., Wadkins R.M.. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry. 2014; 53:1586–1594. PubMed PMC
Pramanik S., Nagatoishi S., Sugimoto N.. DNA tetraplex structure formation from human telomeric repeat motif (TTAGGG):(CCCTAA) in nanocavity water pools of reverse micelles. Chem. Commun. 2012; 48:4815–4817. PubMed
Day H.A., Huguin C., Waller Z.A.. Silver cations fold i-motif at neutral pH. Chem. Commun. (Camb.). 2013; 49:7696–7698. PubMed
Saxena S., Joshi S., Shankaraswamy J., Tyagi S., Kukreti S.. Magnesium and molecular crowding of the cosolutes stabilize the i-motif structure at physiological pH. Biopolymers. 2017; 107:e23018. PubMed
Day H.A., Pavlou P., Waller Z.A.. i-Motif DNA: structure, stability and targeting with ligands. Bioorg. Med. Chem. 2014; 22:4407–4418. PubMed
Fernandez S., Eritja R., Avino A., Jaumot J., Gargallo R.. Influence of pH, temperature and the cationic porphyrin TMPyP4 on the stability of the i-motif formed by the 5 ‘-(C(3)TA(2))(4)-3 ’ sequence of the human telomere. Int. J. Biol. Macromol. 2011; 49:729–736. PubMed
Abou Assi H., Garavís M., González C., Damha M.J.. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res. 2018; 46:8038–8056. PubMed PMC
Lannes L., Halder S., Krishnan Y., Schwalbe H.. Tuning the pH response of i-motif DNA oligonucleotides. ChemBioChem. 2015; 16:1647–1656. PubMed
Gurung S.P., Schwarz C., Hall J.P., Cardin C.J., Brazier J.A.. The importance of loop length on the stability of i-motif structures. Chem. Commun. (Camb.). 2015; 51:5630–5632. PubMed PMC
Reilly S.M., Morgan R.K., Brooks T.A., Wadkins R.M.. Effect of interior loop length on the thermal stability and pK(a) of i-motif DNA. Biochemistry. 2015; 54:1364–1370. PubMed PMC
Fleming A.M., Ding Y., Rogers R.A., Zhu J., Zhu J., Burton A.D., Carlisle C.B., Burrows C.J.. 4n-1 is a “Sweet Spot” in DNA i-Motif folding of 2′-Deoxycytidine homopolymers. J. Am. Chem. Soc. 2017; 139:4682–4689. PubMed
Fleming A.M., Stewart K.M., Eyring G.M., Ball T.E., Burrows C.J.. Unraveling the 4n-1 rule for DNA i-motif stability: base pairs vs. loop lengths. Org. Biomol. Chem. 2018; 16:4537–4546. PubMed
McKim M., Buxton A., Johnson C., Metz A., Sheardy R.D.. Loop sequence context influences the formation and stability of the i-motif for DNA oligomers of Sequence (CCCXXX)4, where X = A and/or T, under slightly acidic conditions. J. Phys. Chem. B. 2016; 120:7652–7661. PubMed
Benabou S., Garavis M., Lyonnais S., Eritja R., Gonzalez C., Gargallo R.. Understanding the effect of the nature of the nucleobase in the loops on the stability of the i-motif structure. Phys. Chem. Chem. Phys. 2016; 18:7997–8004. PubMed
Lieblein A.L., Furtig B., Schwalbe H.. Optimizing the kinetics and thermodynamics of DNA i-motif folding. ChemBioChem. 2013; 14:1226–1230. PubMed
Manzini G., Yathindra N., Xodo L.E.. Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. Nucleic Acids Res. 1994; 22:4634–4640. PubMed PMC
Mergny J.-L., Lacroix L., Han X., Leroy J.-L., Helene C.. Intramolecular folding of pyrimidine oligodeoxynucleotides into an i-DNA motif. J. Am. Chem. Soc. 1995; 117:4797–4803.
Wright E.P., Huppert J.L., Waller Z.A.E.. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017; 45:2951–2959. PubMed PMC
Cui Y., Koirala D., Kang H., Dhakal S., Yangyuoru P., Hurley L.H., Mao H.. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL. Nucleic Acids Res. 2014; 42:5755–5764. PubMed PMC
Kang H.J., Kendrick S., Hecht S.M., Hurley L.H.. The transcriptional complex between the BCL2 i-motif and hnRNP LL is a molecular switch for control of gene expression that can be modulated by small molecules. J. Am. Chem. Soc. 2014; 136:4172–4185. PubMed PMC
Dzatko S., Krafcikova M., Hansel-Hertsch R., Fessl T., Fiala R., Loja T., Krafcik D., Mergny J.L., Foldynova-Trantirkova S., Trantirek L.. Evaluation of the stability of DNA i-Motifs in the nuclei of living mammalian cells. Angew. Chem.-Int. Ed. 2018; 57:2165–2169. PubMed PMC
Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D.. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018; 10:631–637. PubMed
Gray D.M., Hung S.H., Johnson K.H.. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995; 246:19–34. PubMed
Mergny J.L., Lacroix L.. Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–537. PubMed
Ross S.A., Burrows C.J.. Cytosine-specific chemical probing of DNA using bromide and monoperoxysulfate. Nucleic Acids Res. 1996; 24:5062–5063. PubMed PMC
Guo K., Pourpak A., Beetz-Rogers K., Gokhale V., Sun D., Hurley L.H.. Formation of pseudosymmetrical G-quadruplex and i-motif structures in the proximal promoter region of the RET oncogene. J. Am. Chem. Soc. 2007; 129:10220–10228. PubMed PMC
Del Villar-Guerra R., Trent J.O., Chaires J.B.. G-Quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. (Int. Ed. Engl.). 2018; 57:7171–7175. PubMed PMC
Fujii T., Sugimoto N.. Loop nucleotides impact the stability of intrastrand i-motif structures at neutral pH. Phys. Chem. Chem. Phys. 2015; 17:16719–16722. PubMed
Dvorakova Z., Renciuk D., Kejnovska I., Skolakova P., Bednarova K., Sagi J., Vorlickova M.. i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions. Nucleic Acids Res. 2018; 46:1624–1634. PubMed PMC
Lieblein A.L., Buck J., Schlepckow K., Fürtig B., Schwalbe H.. Time‐resolved NMR spectroscopic studies of DNA i‐motif folding reveal kinetic partitioning. Angew. Chem. Int. Ed. Engl. 2012; 51:250–253. PubMed
Rogers R.A., Fleming A.M., Burrows C.J.. Unusual isothermal hysteresis in DNA i-Motif pH Transitions: a study of the RAD17 promoter sequence. Biophys. J. 2018; 114:1804–1815. PubMed PMC
Wu S., Wang X., Ye X., Zhang G.. pH-Induced conformational change and dimerization of DNA chains investigated by analytical ultracentrifugation. J. Phys. Chem. B. 2013; 117:11541–11547. PubMed
In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells
DNA i-motif formation at neutral pH is driven by kinetic partitioning
Revealing structural peculiarities of homopurine GA repetition stuck by i-motif clip