Revealing structural peculiarities of homopurine GA repetition stuck by i-motif clip
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34718718
PubMed Central
PMC8599794
DOI
10.1093/nar/gkab915
PII: 6413599
Knihovny.cz E-zdroje
- MeSH
- dinukleotidové repetice * MeSH
- konformace nukleové kyseliny * MeSH
- magnetická rezonanční spektroskopie MeSH
- metylace DNA MeSH
- oligonukleotidy chemie MeSH
- puriny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- oligonukleotidy MeSH
- puriny MeSH
Non-canonical forms of nucleic acids represent challenging objects for both structure-determination and investigation of their potential role in living systems. In this work, we uncover a structure adopted by GA repetition locked in a parallel homoduplex by an i-motif. A series of DNA oligonucleotides comprising GAGA segment and C3 clip is analyzed by NMR and CD spectroscopies to understand the sequence-structure-stability relationships. We demonstrate how the relative position of the homopurine GAGA segment and the C3 clip as well as single-base mutations (guanine deamination and cytosine methylation) affect base pairing arrangement of purines, i-motif topology and overall stability. We focus on oligonucleotides C3GAGA and methylated GAGAC3 exhibiting the highest stability and structural uniformity which allowed determination of high-resolution structures further analyzed by unbiased molecular dynamics simulation. We describe sequence-specific supramolecular interactions on the junction between homoduplex and i-motif blocks that contribute to the overall stability of the structures. The results show that the distinct structural motifs can not only coexist in the tight neighborhood within the same molecule but even mutually support their formation. Our findings are expected to have general validity and could serve as guides in future structure and stability investigations of nucleic acids.
CEITEC Central European Institute of Technology Masaryk University Kamenice 5 CZ 62500 Brno Czechia
Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 CZ 612 65 Brno Czechia
Zobrazit více v PubMed
Wells R.D. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 2007; 32:271–278. PubMed
Balasubramanian S., Neidle S.. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol. 2009; 13:345–353. PubMed PMC
Manor H., Rao B.S., Martin R.G.. Abundance and degree of dispersion of genomic d(GA)n·d(TC)n. J. Mol. Evol. 1988; 27:96–101. PubMed
Kumar S., Bhatia S.. A polymorphic (GA/CT)n- SSR influences promoter activity of Tryptophan decarboxylase gene in Catharanthus roseus L. Don. Sci. Rep. 2016; 6:33280. PubMed PMC
Kerrigan L.A., Croston G.E., Lira L.M., Kadonaga J.T.. Sequence-specific transcriptional antirepression of the Drosophila Krüppel gene by the GAGA factor. J. Biol. Chem. 1991; 266:574–582. PubMed
Li J., Liang V.C.T., Sedgwick T., Wong J., Shi Y.-B.. Unique organization and involvement of GAGA factors in transcriptional regulation of the Xenopus stromelysin-3 gene. Nucleic Acids Res. 1998; 26:3018–3025. PubMed PMC
Casasnovas J.M., Huertas D., Ortiz-Lombardía M., Kypr J., Azorín F.. Structural polymorphism of d(GA · TC)n DNA sequences: intramolecular and intermolecular associations of the individual strands. J. Mol. Biol. 1993; 233:671–681. PubMed
Dolinnaya N.G., Fresco J.R.. Single-stranded nucleic acid helical secondary structure stabilized by ionic bonds: d(A(+)-G)10. Proc. Natl. Acad. Sci. U.S.A. 1992; 89:9242–9246. PubMed PMC
Rippe K., Fritsch V., Westhof E., Jovin T.M.. Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. EMBO J. 1992; 11:3777–3786. PubMed PMC
Dolinnaya N.G., Ulku A., Fresco J.R.. Parallel-stranded linear homoduplexes of d(A+-G)n >10 and d(A-G)n >10 manifesting the contrasting ionic strength sensitivities of poly(A+.A+) and DNA. Nucleic Acids Res. 1997; 25:1100–1107. PubMed PMC
Kypr J., Kejnovská I., Renčiuk D., Vorlíčková M.. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009; 37:1713–1725. PubMed PMC
Benet A., Mollà G., Azorín F.. d(GA·TC)n microsatellite DNA sequences enhance homologous DNA recombination in SV40 minichromosomes. Nucleic Acids Res. 2000; 28:4617–4622. PubMed PMC
Aharoni A., Baran N., Manor H.. Characterization of a multisubunit human protein which selectively binds single stranded d(GA) n and d(GT) n sequence repeats in DNA. Nucleic Acids Res. 1993; 21:5221–5228. PubMed PMC
Goulian M., Goulian S.H., Codd E.E., Blumenfield A.Z.. Properties of oligodeoxynucleotides that determine priming activity with Escherichia coli deoxyribonucleic acid polymerase I. Biochemistry. 1973; 12:2893–2901. PubMed
Lu Q., Wallrath L.L., Elgin S.C.. The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter. EMBO J. 1995; 14:4738–4746. PubMed PMC
Lu Q., Wallrath L.L., Allan B.D., Glaser R.L., Lis J.T., Elgin S.C.R.. Promoter sequence containing (CT)n · (GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene. J. Mol. Biol. 1992; 225:985–998. PubMed
Lee J.S., Evans D.H., Morgan A.R.. Polypurine DNAs and RNAs form secondary structures which may be tetra-stranded. Nucleic Acids Res. 1980; 8:4305–4320. PubMed PMC
Lee J.S. The stability of polypurine tetraplexes in the presence of mono- and divalent cations. Nucleic Acids Res. 1990; 18:6057–6060. PubMed PMC
Antao V.P., Gray D.M., Ratliff R.L.. CD of six different conformational rearrangements of poly[d(A-G).d(C-T)] induced by low pH. Nucleic Acids Res. 1988; 16:719–738. PubMed PMC
Shiber M.C., Lavelle L., Fossella J.A., Fresco J.R.. α-DNA, a single-stranded secondary structure stabilized by ionic and hydrogen bonds: d(A+-G)n. Biochemistry. 1995; 34:14293–14299. PubMed
Vorlíčková M., Kejnovská I., Kovanda J., Kypr J.. Dimerization of the guanine-adenine repeat strands of DNA. Nucleic Acids Res. 1999; 27:581–586. PubMed PMC
Gray D.M., Vaughan M., Ratcliff R.L., Hayes F.N.. Circular dichroism spectra show that repeating dinucleotide DNAs may form helices in which every other best is looped out. Nucleic Acids Res. 1980; 8:3695–3708. PubMed PMC
Robinson H., van der Marel G.A., van Boom J.H., Wang A.H.. Unusual DNA conformation at low pH revealed by NMR: parallel-stranded DNA duplex with homo base pairs. Biochemistry. 1992; 31:10510–10517. PubMed
Robinson H., Wang A.H.. 5′-CGA sequence is a strong motif for homo base-paired parallel-stranded DNA duplex as revealed by NMR analysis. Proc. Natl. Acad. Sci. U.S.A. 1993; 90:5224–5228. PubMed PMC
Robinson H., van Boom J.H., Wang A.H.-J.. 5′-CGA motif induces other sequences to form homo base-paired parallel-stranded DNA duplex: The structure of (G-A)n derived from four DNA oligomers containing (G-A)3 sequence. J. Am. Chem. Soc. 1994; 116:1565–1566.
Wang Y., Patel D.J.. Solution structure of the d(T-C-G-A) duplex at acidic pH. A parallel-stranded helix containing C+ .C, G.G and A.A pairs. J. Mol. Biol. 1994; 242:508–526. PubMed
Szabat M., Kierzek R.. Parallel-stranded DNA and RNA duplexes – structural features and potential applications. FEBS J. 2017; 284:3986–3998. PubMed
Mei H., Budow S., Seela F.. Construction and assembly of chimeric DNA: oligonucleotide hybrid molecules composed of parallel or antiparallel duplexes and tetrameric i-motifs. Biomacromolecules. 2012; 13:4196–4204. PubMed
Gehring K., Leroy J.-L., Guéron M.. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature. 1993; 363:561–565. PubMed
Guéron M., Leroy J.-L.. The i-motif in nucleic acids. Curr. Opin. Struc. Biol. 2000; 10:326–331. PubMed
Wright E.P., Huppert J.L., Waller Z.A.E.. Identification of multiple genomic DNA sequences which form i-motif structures at neutral pH. Nucleic Acids Res. 2017; 45:2951–2959. PubMed PMC
Školáková P., Renčiuk D., Palacký J., Krafčík D., Dvořáková Z., Kejnovská I., Bednářová K., Vorlíčková M.. Systematic investigation of sequence requirements for DNA i-motif formation. Nucleic Acids Res. 2019; 47:2177–2189. PubMed PMC
Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D.. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem. 2018; 10:631–637. PubMed
Dzatko S., Krafcikova M., Hänsel-Hertsch R., Fessl T., Fiala R., Loja T., Krafcik D., Mergny J., Foldynova-Trantirkova S., Trantirek L.. Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew. Chem. Int. Ed. Engl. 2018; 57:2165–2169. PubMed PMC
Serrano-Chacón I., Mir B., Escaja N., González C.. Structure of i-Motif/Duplex Junctions at Neutral pH. J. Am. Chem. Soc. 2021; 143:12919–12923. PubMed PMC
Esmaili N., Leroy J.L.. i-motif solution structure and dynamics of the d(AACCCC) and d(CCCCAA) tetrahymena telomeric repeats. Nucleic Acids Res. 2005; 33:213–224. PubMed PMC
Malliavin T.E., Gau J., Snoussi K., Leroy J.-L.. Stability of the i-motif structure is related to the interactions between phosphodiester backbones. Biophys. J. 2003; 84:3838–3847. PubMed PMC
Lieblein A.L., Buck J., Schlepckow K., Fürtig B., Schwalbe H.. Time-resolved NMR spectroscopic studies of DNA i-motif folding reveal kinetic partitioning. Angew. Chem. Int. Ed. Engl. 2012; 51:250–253. PubMed
Xu B., Devi G., Shao F.. Regulation of telomeric i-motif stability by 5-methylcytosine and 5-hydroxymethylcytosine modification. Org. Biomol. Chem. 2015; 13:5646–5651. PubMed
Školáková P., Badri Z., Foldynová-Trantírková S., Ryneš J., Šponer J., Fojtová M., Fajkus J., Marek R., Vorlíčková M., Mergny J.-L.et al. .. Composite 5-methylations of cytosines modulate i-motif stability in a sequence-specific manner: Implications for DNA nanotechnology and epigenetic regulation of plant telomeric DNA. Biochim. Biophys. Acta Gen. Subj. 2020; 1864:129651. PubMed
Kejnovská I., Renčiuk D., Palacký J., Vorlíčková M.. Yang D., Lin C.. CD Study of the G-Quadruplex Conformation. G-Quadruplex Nucleic Acids: Methods and Protocols, Methods in Molecular Biology. 2019; NY: Springer; 25–44. PubMed
Mergny J.-L., Lacroix L.. Analysis of thermal melting curves. Oligonucleotides. 2003; 13:515–537. PubMed
Piotto M., Saudek V., Sklenář V.. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR. 1992; 2:661–665. PubMed
Kumar A., Ernst R.R., Wüthrich K.. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem. Biophys. Res. Commun. 1980; 95:1–6. PubMed
Wüthrich K. NMR of Proteins and Nucleic Acids. 1986; 1st ednNY: Wiley-Interscience.
Sklenář V., Miyashiro H., Zon G., Miles H.T., Bax A.. Assignment of the 31P and 1H resonances in oligonucleotides by two-dimensional NMR spectroscopy. FEBS Lett. 1986; 208:94–98. PubMed
Goddard T.D., Kneller D.G.. SPARKY 3. 2008; San Francisco, USA: University of California.
Case D.A., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Greene D., Homeyer N.et al. .. AMBER16. 2016; San Francisco, USA: University of California.
Ivani I., Dans P.D., Noy A., Pérez A., Faustino I., Hospital A., Walther J., Andrio P., Goñi R., Balaceanu A.et al. .. Parmbsc1: a refined force-field for DNA simulations. Nat. Methods. 2016; 13:55–58. PubMed PMC
Case D.A., Cheatham T.E., Darden T., Gohlke H., Luo R., Merz K.M., Onufriev A., Simmerling C., Wang B., Woods R.J.. The Amber biomolecular simulation programs. J. Comput. Chem. 2005; 26:1668–1688. PubMed PMC
Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E. III, Laughton C.A., Orozco M.. Refinement of the AMBER force field for nucleic acids: improving the description of α/γ conformers. Biophys. J. 2007; 92:3817–3829. PubMed PMC
Kocman V., Plavec J.. A tetrahelical DNA fold adopted by tandem repeats of alternating GGG and GCG tracts. Nat. Commun. 2014; 5:5831. PubMed PMC
Becke A.D. A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 1993; 98:1372–1377.
Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J.. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994; 98:11623–11627.
Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010; 132:154104. PubMed
Weigend F., Ahlrichs R.. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005; 7:3297. PubMed
Ahlrichs R., Bär M., Häser M., Horn H., Kölmel C.. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989; 162:165–169.
Kulhánek P. DYNUTIL - various utilities for molecular dynamics simulations performed in AMBER CPMD Masaryk University. 2019; Brno.
Ryckaert J.-P., Ciccotti G., Berendsen H.J.C.. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Chem. 1977; 23:327–341.
Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R.. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984; 81:3684–3690.
Roe D.R., Cheatham T.E.. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013; 9:3084–3095. PubMed
Lu X.-J., Olson W.K.. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 2008; 3:1213–1227. PubMed PMC
Zhou J., Amrane S., Korkut D.N., Bourdoncle A., He H.-Z., Ma D.-L., Mergny J.-L.. Combination of i-motif and G-quadruplex structures within the same strand: formation and application. Angew. Chem. Int. Ed. 2013; 52:7742–7746. PubMed
Leroy J.-L., Guéron M.. Solution structures of the i-motif tetramers of d(TCC), d(5methylCCT) and d(T5methylCC): novel NOE connections between amino protons and sugar protons. Structure. 1995; 3:101–120. PubMed
Greene K.L., Jones R.L., Li Y., Robinson H., Wang A.H., Zon G., Wilson W.D.. Solution structure of a GA mismatch DNA sequence, d(CCATGAATGG)2, determined by 2D NMR and structural refinement methods. Biochemistry. 1994; 33:1053–1062. PubMed
Heus H.A., Wijmenga S.S., Hoppe H., Hilbers C.W.. The detailed structure of tandem G·A mismatched base-pair motifs in RNA duplexes is context dependent11Edited by I. Tinoco. J. Mol. Biol. 1997; 271:147–158. PubMed
Jafilan S., Klein L., Hyun C., Florián J.. Intramolecular base stacking of dinucleoside monophosphate anions in aqueous solution. J. Phys. Chem. B. 2012; 116:3613–3618. PubMed PMC
Li Y., Zon G., Wilson W.D.. NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex. Proc. Natl. Acad. Sci. U.S.A. 1991; 88:26–30. PubMed PMC