Evaluation of the Stability of DNA i-Motifs in the Nuclei of Living Mammalian Cells

. 2018 Feb 19 ; 57 (8) : 2165-2169. [epub] 20180129

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29266664

C-rich DNA has the capacity to form a tetra-stranded structure known as an i-motif. The i-motifs within genomic DNA have been proposed to contribute to the regulation of DNA transcription. However, direct experimental evidence for the existence of these structures in vivo has been missing. Whether i-motif structures form in complex environment of living cells is not currently known. Herein, using state-of-the-art in-cell NMR spectroscopy, we evaluate the stabilities of i-motif structures in the complex cellular environment. We show that i-motifs formed from naturally occurring C-rich sequences in the human genome are stable and persist in the nuclei of living human cells. Our data show that i-motif stabilities in vivo are generally distinct from those in vitro. Our results are the first to interlink the stability of DNA i-motifs in vitro with their stability in vivo and provide essential information for the design and development of i-motif-based DNA biosensors for intracellular applications.

Zobrazit více v PubMed

Brooks T. A., Kendrick S., Hurley L. H., FEBS J. 2010, 277, 3459–3469; PubMed PMC

Amato J., Iaccarino N., Randazzo A., Novellino E., Pagano B., ChemMedChem 2014, 9, 2026–2030. PubMed

Gehring K., Leroy J.-L., Guéron M., Nature 1993, 363, 561–565; PubMed

Leroy J.-L., Guéron M., Mergny J.-L., Hélène C., Nucleic Acids Res. 1994, 22, 1600–1606; PubMed PMC

Lieblein A. L., Krämer M., Dreuw A., Fürtig B., Schwalbe H., Angew. Chem. Int. Ed. 2012, 51, 4067–4070; PubMed

Angew. Chem. 2012, 124, 4143–4146.

Kang H. J., Kendrick S., Hecht S. M., Hurley L. H., J. Am. Chem. Soc. 2014, 136, 4172–4185; PubMed PMC

Kendrick S., Kang H. J., Alam M. P., Madathil M. M., Agrawal P., Gokhale V., Yang D., Hecht S. M., Hurley L. H., J. Am. Chem. Soc. 2014, 136, 4161–4171; PubMed PMC

Brown R. V., Wang T., Chappeta V. R., Wu G., Onel B., Chawla R., Quijada H., Camp S. M., Chiang E. T., Lassiter Q. R., Lee C., Phanse S., Turnidge M. A., Zhao P., Garcia J. G. N., Gokhale V., Yang D., Hurley L. H., J. Am. Chem. Soc. 2017, 139, 7456–7475; PubMed PMC

Roy B., Talukder P., Kang H. J., Tsuen S. S., Alam M. P., Hurley L. H., Hecht S. M., J. Am. Chem. Soc. 2016, 138, 10950–10962; PubMed

Sutherland C., Cui Y., Mao H., Hurley L. H., J. Am. Chem. Soc. 2016, 138, 14138–14151; PubMed

Kaiser C. E., Van Ert N. A., Agrawal P., Chawla R., Yang D., Hurley L. H., J. Am. Chem. Soc. 2017, 139, 8522–8536; PubMed PMC

Kendrick S., Muranyi A., Gokhale V., Hurley L. H., Rimsza L. M., J. Med. Chem. 2017, 60, 6587–6597; PubMed

Takahashi S., Brazier J. A., Sugimoto N., Proc. Natl. Acad. Sci. USA 2017, 114, 9605–9610. PubMed PMC

Chen Y., Qu K., Zhao C., Wu L., Ren J., Wang J., Qu X., Nat. Commun. 2012, 3, 1074; PubMed

Školáková P., Foldynová-Trantírková S., Bednářová K., Fiala R., Vorlíčková M., Trantírek L., Nucleic Acids Res. 2015, 43, 4733–4745. PubMed PMC

Mergny J.-L., Lacroix J., Han X., Leroy J.-L., Héléne C., J. Am. Chem. Soc. 1995, 117, 8887–8898;

Mergny J.-L., Lacroix L., Nucleic Acids Res. 1998, 26, 4797–4803. PubMed PMC

Hänsel R., Foldynová-Trantírková S., Löhr F., Buck J., Bongartz E., Bamberg E., Schwalbe H., Dötsch V., Trantírek L., J. Am. Chem. Soc. 2009, 131, 15761–15768. PubMed

Brazier J. A., Shah A., Brown G. D., Chem. Commun. 2012, 48, 10739–10741. PubMed

Wright E. P., Huppert J.-L., Waller Z. A. E., Nucleic Acids Res. 2017, 45, 2951–2959. PubMed PMC

Phan A.-T., Mergny J.-L., Nucleic Acids Res. 2002, 30, 4618–4625. PubMed PMC

Rajendran A., Nakano S., Sugimoto N., Chem. Commun. 2010, 46, 1299–1301; PubMed

Pramanik S., Nagatoishi S., Sugimoto N., Chem. Commun. 2012, 48, 4815–4817; PubMed

Miyoshi D., Nakamura K., Tateishi-Karimata H., Ohmichi T., Sugimoto N., J. Am. Chem. Soc. 2009, 131, 3522–3531. PubMed

Fleming A. M., Ding Y., Rogers R. A., Zhu J., Zhu J., Burton A. D., Carlisle C. B., Burrows C. J., J. Am. Chem. Soc. 2017, 139, 4682–4689. PubMed

Yatsunyk L. A., Mendoza O., Mergny J.-L., Acc. Chem. Res. 2014, 47, 1836–1844; PubMed

Wang F., Liu X., Willner I., Angew. Chem. Int. Ed. 2015, 54, 1098–1129; PubMed

Angew. Chem. 2015, 127, 1112–1144;

Alba J. J., Sadurní A., Gargallo R., Crit. Rev. Anal. Chem. 2016, 46, 443–454. PubMed

Day H. A., Pavlou P., Waller Z. A. E., Bioorg. Med. Chem. 2014, 22, 4407–4418. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Structural insights into i-motif DNA structures in sequences from the insulin-linked polymorphic region

. 2024 Aug 20 ; 15 (1) : 7119. [epub] 20240820

In-cell NMR suggests that DNA i-motif levels are strongly depleted in living human cells

. 2024 Mar 05 ; 15 (1) : 1992. [epub] 20240305

A sodium/potassium switch for G4-prone G/C-rich sequences

. 2024 Jan 11 ; 52 (1) : 448-461.

A thermosensitive gel matrix for bioreactor-assisted in-cell NMR of nucleic acids and proteins

. 2023 Dec ; 77 (5-6) : 203-215. [epub] 20230909

DNA i-motif formation at neutral pH is driven by kinetic partitioning

. 2023 Apr 11 ; 51 (6) : 2950-2962.

Alkaloid Escholidine and Its Interaction with DNA Structures

. 2021 Nov 24 ; 10 (12) : . [epub] 20211124

Revealing structural peculiarities of homopurine GA repetition stuck by i-motif clip

. 2021 Nov 18 ; 49 (20) : 11425-11437.

Towards Profiling of the G-Quadruplex Targeting Drugs in the Living Human Cells Using NMR Spectroscopy

. 2021 Jun 03 ; 22 (11) : . [epub] 20210603

Insight into formation propensity of pseudocircular DNA G-hairpins

. 2021 Feb 26 ; 49 (4) : 2317-2332.

In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells

. 2021 Jan 11 ; 60 (2) : 865-872. [epub] 20201109

Systematic investigation of sequence requirements for DNA i-motif formation

. 2019 Mar 18 ; 47 (5) : 2177-2189.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace