Structural insights into i-motif DNA structures in sequences from the insulin-linked polymorphic region
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
Wellcome Trust - United Kingdom
CC1078
Arthritis Research UK - United Kingdom
692068: BISON
European Commission (EC)
18/0005820
Diabetes UK - United Kingdom
PubMed
39164244
PubMed Central
PMC11336075
DOI
10.1038/s41467-024-50553-0
PII: 10.1038/s41467-024-50553-0
Knihovny.cz E-resources
- MeSH
- DNA * chemistry genetics MeSH
- G-Quadruplexes * MeSH
- Insulin * chemistry genetics MeSH
- Nucleic Acid Conformation MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Models, Molecular MeSH
- Nucleotide Motifs MeSH
- Polymorphism, Genetic MeSH
- Promoter Regions, Genetic * MeSH
- Genes, Reporter MeSH
- Base Sequence MeSH
- Tandem Repeat Sequences genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA * MeSH
- Insulin * MeSH
The insulin-linked polymorphic region is a variable number of tandem repeats region of DNA in the promoter of the insulin gene that regulates transcription of insulin. This region is known to form the alternative DNA structures, i-motifs and G-quadruplexes. Individuals have different sequence variants of tandem repeats and although previous work investigated the effects of some variants on G-quadruplex formation, there is not a clear picture of the relationship between the sequence diversity, the DNA structures formed, and the functional effects on insulin gene expression. Here we show that different sequence variants of the insulin linked polymorphic region form different DNA structures in vitro. Additionally, reporter genes in cellulo indicate that insulin expression may change depending on which DNA structures form. We report the crystal structure and dynamics of an intramolecular i-motif, which reveal sequences within the loop regions forming additional stabilising interactions that are critical to formation of stable i-motif structures. The outcomes of this work reveal the detail in formation of stable i-motif DNA structures, with potential for rational based drug design for compounds to target i-motif DNA.
Diamond Light Source Harwell Science and Innovation Campus Chilton Didcot OX11 0DE UK
School of Pharmacy University College London 29 39 Brunswick Square London WC1N 1AX UK
UCL Centre for Advanced Research Computing University College London Gower Street London WC1E 6BT UK
See more in PubMed
DeFronzo, R. A. et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Prim.1, 15019 (2015). 10.1038/nrdp.2015.19 PubMed DOI
Katsarou, A. et al. Type 1 diabetes mellitus. Nat. Rev. Dis. Prim.3, 17016 (2017). 10.1038/nrdp.2017.16 PubMed DOI
Bell, G. I., Karam, J. H. & Rutter, W. J. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc. Natl. Acad. Sci. USA78, 5759–5763 (1981). 10.1073/pnas.78.9.5759 PubMed DOI PMC
Bell, G. I., Selby, M. J. & Rutter, W. J. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature295, 31–35 (1982). 10.1038/295031a0 PubMed DOI
Kennedy, G. C., German, M. S. & Rutter, W. J. The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nat. Genet.9, 293–298 (1995). 10.1038/ng0395-293 PubMed DOI
Paquette, J., Giannoukakis, N., Polychronakos, C., Vafiadis, P. & Deal, C. The INS 5′ variable number of tandem repeats is associated with IGF2 expression in humans. J. Biol. Chem.273, 14158–14164 (1998). 10.1074/jbc.273.23.14158 PubMed DOI
Bennett, S. T. et al. IDDM2-VNTR-encoded susceptibility to type 1 diabetes: dominant protection and parental transmission of alleles of the insulin gene-linked minisatellite locus. J. Autoimmun.9, 415–421 (1996). 10.1006/jaut.1996.0057 PubMed DOI
Bennett, S. T. et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat. Genet.9, 284–292 (1995). 10.1038/ng0395-284 PubMed DOI
Ong, K. K. et al. The insulin gene VNTR, type 2 diabetes and birth weight. Nat. Genet.21, 262–263 (1999). 10.1038/6775 PubMed DOI
Cai, C. Q., Zhang, T., Breslin, M. B., Giraud, M. & Lan, M. S. Both polymorphic variable number of tandem repeats and autoimmune regulator modulate differential expression of insulin in human thymic epithelial cells. Diabetes60, 336–344 (2011). 10.2337/db10-0255 PubMed DOI PMC
Wang, Y., Zhang, H., Ligon, L. A. & McGown, L. B. Association of insulin-like growth factor 2 with the insulin-linked polymorphic region in cultured fetal thymus cells. Biochemistry48, 8189–8194 (2009). 10.1021/bi900958x PubMed DOI PMC
Xiao, J., Carter, J. A., Frederick, K. A. & McGown, L. B. A genome-inspired DNA ligand for the affinity capture of insulin and insulin-like growth factor-2. J. Sep Sci.32, 1654–1664 (2009). 10.1002/jssc.200900060 PubMed DOI PMC
Rotwein, P., Yokoyama, S., Didier, D. K. & Chirgwin, J. M. Genetic analysis of the hypervariable region flanking the human insulin gene. Am. J. Hum. Genet.39, 291–299 (1986). PubMed PMC
Hammond-Kosack, M. C., Dobrinski, B., Lurz, R., Docherty, K. & Kilpatrick, M. W. The human insulin gene linked polymorphic region exhibits an altered DNA structure. Nucleic Acids Res.20, 231–236 (1992). 10.1093/nar/20.2.231 PubMed DOI PMC
Gehring, K., Leroy, J.-L. & Guéron, M. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature363, 561–565 (1993). 10.1038/363561a0 PubMed DOI
Catasti, P., Chen, X., Moyzis, R. K., Bradbury, E. M. & Gupta, G. Structure-function correlations of the insulin-linked polymorphic region. J. Mol. Biol.264, 534–545 (1996). 10.1006/jmbi.1996.0659 PubMed DOI
Dzatko, S. et al. Evaluation of the stability of DNA i-motifs in the nuclei of living mammalian cells. Angew. Chem. Int. Ed. Engl.57, 2165–2169 (2018). 10.1002/anie.201712284 PubMed DOI PMC
Zeraati, M. et al. I-motif DNA structures are formed in the nuclei of human cells. Nat. Chem.10, 631–637 (2018). 10.1038/s41557-018-0046-3 PubMed DOI
Zanin, I. et al. Genome-wide mapping of i-motifs reveals their association with transcription regulation in live human cells. Nucleic Acids Res.51, 8309–8321 (2023). 10.1093/nar/gkad626 PubMed DOI PMC
Dhakal, S. et al. Coexistence of an ILPR i-motif and a partially folded structure with comparable mechanical stability revealed at the single-molecule level. J. Am. Chem. Soc.132, 8991–8997 (2010). 10.1021/ja100944j PubMed DOI PMC
Jolad, V. V., Murad, F. K., Arnold, J. R. P. & Fisher, J. Solution conformation of d(C4ACAC4TGT)2; an intramolecularly folded i-motif from the insulin minisatellite. Org. Biomol. Chem.3, 2234–2236 (2005). 10.1039/b504606h PubMed DOI
Schonhoft, J. D. et al. ILPR repeats adopt diverse G-quadruplex conformations that determine insulin binding. Biopolymers93, 21–31 (2010). 10.1002/bip.21289 PubMed DOI
Rotwein, P. S. et al. Polymorphism in the 5′ flanking region of the human insulin gene: a genetic marker for non-insulin-dependent diabetes. N. Engl. J. Med.308, 65–71 (1983). 10.1056/NEJM198301133080202 PubMed DOI
Catasti, P. et al. Cystosine-rich strands of the insulin minisatellite adopt hairpins with intercalated cytosine+.cytosine pairs. J. Mol. Biol.272, 369–382 (1997). 10.1006/jmbi.1997.1248 PubMed DOI
Dhakal, S. et al. G-quadruplex and i-motif are mutually exclusive in ILPR double-stranded DNA. Biophys. J.102, 2575–2584 (2012). 10.1016/j.bpj.2012.04.024 PubMed DOI PMC
Abdelhamid, M. A. S. & Waller, Z. A. E. Tricky topology: persistence of folded human telomeric i-Motif DNA at ambient temperature and neutral pH. Front Chem.8, 40 (2020). 10.3389/fchem.2020.00040 PubMed DOI PMC
Mergny, J. L., Li, J., Lacroix, L., Amrane, S. & Chaires, J. B. Thermal difference spectra: a specific signature for nucleic acid structures. Nucleic Acids Res.33, e138 (2005). 10.1093/nar/gni134 PubMed DOI PMC
Kypr, J., Kejnovská, I., Renciuk, D. & Vorlícková, M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res.37, 1713–1725 (2009). 10.1093/nar/gkp026 PubMed DOI PMC
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res.31, 3406–3415 (2003). 10.1093/nar/gkg595 PubMed DOI PMC
Kikin, O., D’Antonio, L. & Bagga, P. S. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res.34, W676–W682 (2006). 10.1093/nar/gkl253 PubMed DOI PMC
Yu, Z. et al. ILPR G-quadruplexes formed in seconds demonstrate high mechanical stabilities. J. Am. Chem. Soc.131, 1876–1882 (2009). 10.1021/ja806782s PubMed DOI
Paritala, H. & Firestine, S. M. Characterization of insulin ILPR sequences for their ability to adopt a G-quadruplex structure. Nucleosides Nucleotides Nucleic Acids29, 81–90 (2010). 10.1080/15257771003597691 PubMed DOI
Basundra, R. et al. A novel G-quadruplex motif modulates promoter activity of human thymidine kinase 1. FEBS J.277, 4254–4264 (2010). 10.1111/j.1742-4658.2010.07814.x PubMed DOI
Kuroda, A. et al. Insulin gene expression is regulated by DNA methylation. PLoS One4, e6953 (2009). 10.1371/journal.pone.0006953 PubMed DOI PMC
Poitout, V., Olson, L. K. & Robertson, R. P. Insulin-secreting cell lines: classification, characteristics and potential applications. Diabetes Metab.22, 7–14 (1996). PubMed
Bell, G. I. et al. Sequence of the human insulin gene. Nature284, 26–32 (1980). 10.1038/284026a0 PubMed DOI
Hay, C. W. & Docherty, K. Comparative analysis of insulin gene promoters: implications for diabetes research. Diabetes55, 3201–3213 (2006). 10.2337/db06-0788 PubMed DOI
Ye, Y. et al. A critical role of the mechanosensor PIEZO1 in glucose-induced insulin secretion in pancreatic beta-cells. Nat. Commun.13, 4237 (2022). 10.1038/s41467-022-31103-y PubMed DOI PMC
Cottet-Dumoulin D., et al. Biosynthetic activity differs between Islet cell types and in beta cells is modulated by glucose and not by secretion. Endocrinology162, bqaa239 (2021). PubMed PMC
Phan, A. T., Gueron, M. & Leroy, J. L. The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere. J. Mol. Biol.299, 123–144 (2000). 10.1006/jmbi.2000.3613 PubMed DOI
Weil, J. et al. Stabilization of the i-motif by intramolecular adenine-adenine-thymine base triple in the structure of d(ACCCT). Acta Crystallogr. Sect. D. Biol. Crystallogr.55, 422–429 (1999). 10.1107/S0907444998012529 PubMed DOI
Terwilliger, T. C. et al. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal. Acta Crystallogr. Sect. D.72, 359–374 (2016).10.1107/S2059798315019403 PubMed DOI PMC
Phan, A. T., Guéron, M. & Leroy, J.-L. The solution structure and internal motions of a fragment of the cytidine-rich strand of the human telomere. J. Mol. Biol.299, 123–144 (2000). 10.1006/jmbi.2000.3613 PubMed DOI
Li, K. S. et al. Crystal structure of an i-motif from the HRAS oncogene promoter. Angew. Chem. Int. Ed. Engl.62, e202301666 (2023). 10.1002/anie.202301666 PubMed DOI PMC
Serrano-Chacón, I., Mir, B., Escaja, N. & González, C. Structure of i-motif/duplex junctions at neutral pH. J. Am. Chem. Soc.143, 12919–12923 (2021). 10.1021/jacs.1c04679 PubMed DOI PMC
Bhattacharya, P. K., Cha, J. & Barton, J. K. 1H NMR determination of base‐pair lifetimes in oligonucleotides containing single base mismatches. Nucleic Acids Res.30, 4740–4750 (2002). 10.1093/nar/gkf601 PubMed DOI PMC
Yazdani, K. et al. Decoding complexity in biomolecular recognition of DNA i-motifs with microarrays. Nucleic Acids Res.51, 12020–12030 (2023). 10.1093/nar/gkad981 PubMed DOI PMC
Wright, E. P., Lamparska, K., Smith, S. S. & Waller, Z. A. E. Substitution of cytosine with guanylurea decreases the stability of i-motif DNA. Biochemistry56, 4879–4883 (2017). 10.1021/acs.biochem.7b00628 PubMed DOI
Mergny J. L., Lacroix L. U. V. Melting of G-quadruplexes. Curr. Protoc. Nucleic Acid Chem.Chapter 17, 17.1.11–17.1.15 (2009). PubMed
Wright, E. P. et al. Epigenetic modification of cytosines fine tunes the stability of i-motif DNA. Nucleic Acids Res.48, 55–62 (2019).10.1093/nar/gkz1082 PubMed DOI PMC
Wagner, A., Duman, R., Henderson, K. & Mykhaylyk, V. In-vacuum long-wavelength macromolecular crystallography. Acta Crystallogr. Sect. D.72, 430–439 (2016).10.1107/S2059798316001078 PubMed DOI PMC
Gildea, R. J. et al. xia2.multiplex: a multi-crystal data-analysis pipeline. Acta Crystallogr. Sect. D., Struct. Biol.78, 752–769 (2022). 10.1107/S2059798322004399 PubMed DOI PMC
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. Sect. D. Biol. Crystallogr.69, 1204–1214 (2013). 10.1107/S0907444913000061 PubMed DOI PMC
Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A64, 112–122 (2008). 10.1107/S0108767307043930 PubMed DOI
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D. Biol. Crystallogr.60, 2126–2132 (2004). 10.1107/S0907444904019158 PubMed DOI
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D. Biol. Crystallogr.53, 240–255 (1997). 10.1107/S0907444996012255 PubMed DOI
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D.75, 861–877 (2019).10.1107/S2059798319011471 PubMed DOI PMC
Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. Sect. D.68, 352–367 (2012). 10.1107/S0907444912001308 PubMed DOI PMC
McNicholas, S., Potterton, E., Wilson, K. S. & Noble, M. E. M. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr. Sect. D.67, 386–394 (2011). 10.1107/S0907444911007281 PubMed DOI PMC
Grant G. R., Manduchi E., Stoeckert C. J., Jr. Analysis and management of microarray gene expression data. Curr. Protoc. Mol. Biol. Chapter 19, Unit 19.16 (2007). PubMed
Adams, R. W., Holroyd, C. M., Aguilar, J. A., Nilsson, M. & Morris, G. A. Perfecting” WATERGATE: clean proton NMR spectra from aqueous solution. Chem. Commun.49, 358–360 (2013).10.1039/C2CC37579F PubMed DOI
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR6, 277–293 (1995). 10.1007/BF00197809 PubMed DOI
Pérez, A., Herrera-Nieto, P., Doerr, S. & De Fabritiis, G. AdaptiveBandit: a multi-armed bandit framework for adaptive sampling in molecular simulations. J. Chem. Theory Comput.16, 4685–4693 (2020). 10.1021/acs.jctc.0c00205 PubMed DOI
Scherer, M. K. et al. PyEMMA 2: a software package for estimation, validation, and analysis of markov models. J. Chem. Theory Comput.11, 5525–5542 (2015). 10.1021/acs.jctc.5b00743 PubMed DOI