Insight into formation propensity of pseudocircular DNA G-hairpins

. 2021 Feb 26 ; 49 (4) : 2317-2332.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33524154

We recently showed that Saccharomyces cerevisiae telomeric DNA can fold into an unprecedented pseudocircular G-hairpin (PGH) structure. However, the formation of PGHs in the context of extended sequences, which is a prerequisite for their function in vivo and their applications in biotechnology, has not been elucidated. Here, we show that despite its 'circular' nature, PGHs tolerate single-stranded (ss) protrusions. High-resolution NMR structure of a novel member of PGH family reveals the atomistic details on a junction between ssDNA and PGH unit. Identification of new sequences capable of folding into one of the two forms of PGH helped in defining minimal sequence requirements for their formation. Our time-resolved NMR data indicate a possibility that PGHs fold via a complex kinetic partitioning mechanism and suggests the existence of K+ ion-dependent PGH folding intermediates. The data not only provide an explanation of cation-type-dependent formation of PGHs, but also explain the unusually large hysteresis between PGH melting and annealing noted in our previous study. Our findings have important implications for DNA biology and nanotechnology. Overrepresentation of sequences able to form PGHs in the evolutionary-conserved regions of the human genome implies their functionally important biological role(s).

Zobrazit více v PubMed

Mashimo T., Yagi H., Sannohe Y., Rajendran A., Sugiyama H.. Folding pathways of human telomeric type-1 and type-2 G-Quadruplex structures. J. Am. Chem. Soc. 2010; 132:14910–14918. PubMed

Gray R.D., Trent J.O., Chaires J.B.. Folding and unfolding pathways of the human telomeric G-quadruplex. J. Mol. Biol. 2014; 426:1629–1650. PubMed PMC

Stadlbauer P., Kührová P., Banáš P., Koča J., Bussi G., Trantírek L., Otyepka M., Šponer J.. Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations. Nucleic Acids Res. 2015; 43:9626–9644. PubMed PMC

Hou X.-M., Fu Y.-B., Wu W.-Q., Wang L., Teng F.-Y., Xie P., Wang P.-Y., Xi X.-G.. Involvement of G-triplex and G-hairpin in the multi-pathway folding of human telomeric G-quadruplex. Nucleic Acids Res. 2017; 45:11401–11412. PubMed PMC

Zhang M.-L., Xu Y.-P., Kumar A., Zhang Y., Wu W.-Q.. Studying the Potassium-Induced G-Quadruplex DNA folding process using microscale thermophoresis. Biochemistry. 2019; 58:3955–3959. PubMed

Wu W.-Q., Zhang M.-L., Song C.-P.. A comprehensive evaluation of a typical plant telomeric G-quadruplex (G4) DNA reveals the dynamics of G4 formation, rearrangement, and unfolding. J. Biol. Chem. 2020; 295:5461–5469. PubMed PMC

Rajendran A., Endo M., Hidaka K., Sugiyama H.. Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. Angew. Chem. Int. Ed. 2014; 53:4107–4112. PubMed

Rajendran A., Endo M., Hidaka K., Teulade-Fichou M.-P., Mergny J.-L., Sugiyama H.. Small molecule binding to a G-hairpin and a G-triplex: a new insight into anticancer drug design targeting G-rich regions. Chem. Commun. 2015; 51:9181–9184. PubMed

Balasubramanian S., Neidle S.. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol. 2009; 13:345–353. PubMed PMC

Buket O., Clement L., DanZhou Y.. DNA G-quadruplex and its potential as anticancer drug target. Sci. China Chem. 2014; 57:1605–1614. PubMed PMC

Rhodes D., Lipps H.J.. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015; 43:8627–8637. PubMed PMC

Asamitsu S., Obata S., Yu Z., Bando T., Sugiyama H.. Recent progress of targeted G-quadruplex-preferred ligands toward cancer therapy. Molecules. 2019; 24:429. PubMed PMC

Song J.H., Kang H.-J., Luevano L.A., Gokhale V., Wu K., Pandey R., Sherry Chow H.-H., Hurley L.H., Kraft A.S.. Small-molecule-targeting hairpin loop of hTERT promoter G-quadruplex induces cancer cell death. Cell Chem. Biol. 2019; 26:1110–1121. PubMed PMC

Gajarský M., Živković M.L., Stadlbauer P., Pagano B., Fiala R., Amato J., Tomáška L., Šponer J., Plavec J., Trantírek L.. Structure of a stable G-hairpin. J. Am. Chem. Soc. 2017; 139:3591–3594. PubMed

Školáková P., Foldynová-Trantírková S., Bednářová K., Fiala R., Vorlíčková M., Trantírek L.. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA. Nucleic Acids Res. 2015; 43:4733–4745. PubMed PMC

Jurikova K., Gajarsky M., Hajikazemi M., Nosek J., Prochazkova K., Paeschke K., Trantirek L., Tomaska L.. Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae. J. Biol. Chem. 2020; 295:8958–8971. PubMed PMC

Liboska R., Snášel J., Barvík I., Buděšínský M., Pohl R., Točík Z., Páv O., Rejman D., Novák P., Rosenberg I.. 4′-Alkoxy oligodeoxynucleotides: a novel class of RNA mimics. Org. Biomol. Chem. 2011; 9:8261–8267. PubMed

Petrová M., Páv O., Buděšínský M., Zborníková E., Novák P., Rosenbergová Š., Pačes O., Liboska R., Dvořáková I., Šimák O.et al. .. Straightforward synthesis of purine 4′-alkoxy-2′-deoxynucleosides: first report of mixed purine–pyrimidine 4′-alkoxyoligodeoxynucleotides as new RNA mimics. Org. Lett. 2015; 17:3426–3429. PubMed

Lee W., Tonelli M., Markley J.L.. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics. 2015; 31:1325–1327. PubMed PMC

Case D.A., Babin V., Berryman J., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Gohlke H.et al. .. AMBER 14. 2014; San Francisco: University of California.

Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A.. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995; 117:5179–5197.

Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M.. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007; 92:3817–3829. PubMed PMC

Krepl M., Zgarbová M., Stadlbauer P., Otyepka M., Banáš P., Koča J., Cheatham T.E., Jurečka P., Sponer J.. Reference simulations of noncanonical nucleic acids with different χ variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA. J. Chem. Theory Comput. 2012; 8:2506–2520. PubMed PMC

Zgarbová M., Luque F.J., Sponer J., Cheatham T.E., Otyepka M., Jurečka P.. Toward improved description of DNA backbone: revisiting epsilon and zeta torsion force field parameters. J. Chem. Theory Comput. 2013; 9:2339–2354. PubMed PMC

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E.. UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25:1605–1612. PubMed

Case D.A., Ben-Shalom I.Y., Brozell S.R., Cerutti D.S., Cheatham T.E. III, Cruzeiro V.W.D., Darden T.A., Duke R.E., Ghoreishi D., Gilson M.K.et al. .. AMBER 2018. 2018; San Francisco: University of California.

Zgarbová M., Šponer J., Otyepka M., Cheatham T.E., Galindo-Murillo R., Jurečka P.. Refinement of the sugar–phosphate backbone torsion beta for AMBER force fields improves the description of Z- and B-DNA. J. Chem. Theory Comput. 2015; 11:5723–5736. PubMed

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L.. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983; 79:926–935.

Berendsen H.J.C., Grigera J.R., Straatsma T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987; 91:6269–6271.

Izadi S., Anandakrishnan R., Onufriev A.V.. Building water models: a different approach. J. Phys. Chem. Lett. 2014; 5:3863–3871. PubMed PMC

Joung I.S., Cheatham T.E.. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC

Salomon-Ferrer R., Götz A.W., Poole D., Le Grand S., Walker R.C.. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh ewald. J. Chem. Theory Comput. 2013; 9:3878–3888. PubMed

Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984; 81:3684–3690.

Ryckaert J.-P., Ciccotti G., Berendsen H.J.C.. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977; 23:327–341.

Miyamoto S., Kollman P.A.. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 1992; 13:952–962.

Hopkins C.W., Le Grand S., Walker R.C., Roitberg A.E.. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory Comput. 2015; 11:1864–1874. PubMed

Kührová P., Best R.B., Bottaro S., Bussi G., Šponer J., Otyepka M., Banáš P.. Computer folding of RNA tetraloops: identification of key force field deficiencies. J. Chem. Theory Comput. 2016; 12:4534–4548. PubMed PMC

Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D.. The human genome browser at UCSC. Genome Res. 2002; 12:996–1006. PubMed PMC

Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B.et al. .. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinforma. Oxf. Engl. 2009; 25:1422–1423. PubMed PMC

Ferguson K.A. Starch-gel electrophoresis—application to the classification of pituitary proteins and polypeptides. Metabolism. 1964; 13:985–1002. PubMed

Vorlíčková M., Kejnovská I., Sagi J., Renčiuk D., Bednářová K., Motlová J., Kypr J.. Circular dichroism and guanine quadruplexes. Methods. 2012; 57:64–75. PubMed

Kührová P., Mlýnský V., Zgarbová M., Krepl M., Bussi G., Best R.B., Otyepka M., Šponer J., Banáš P.. Improving the performance of the amber RNA force field by tuning the Hydrogen-Bonding interactions. J. Chem. Theory Comput. 2019; 15:3288–3305. PubMed PMC

Lu J., Li Q., Xie H., Chen Z.J., Borovitskaya A.E., Maclaren N.K., Notkins A.L., Lan M.S.. Identification of a second transmembrane protein tyrosine phosphatase, IA-2beta, as an autoantigen in insulin-dependent diabetes mellitus: precursor of the 37-kDa tryptic fragment. Proc. Natl. Acad. Sci. U.S.A. 1996; 93:2307–2311. PubMed PMC

Hänsel R., Foldynová-Trantírková S., Löhr F., Buck J., Bongartz E., Bamberg E., Schwalbe H., Dötsch V., Trantírek L.. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J. Am. Chem. Soc. 2009; 131:15761–15768. PubMed

Zhang A.Y.Q., Balasubramanian S. The kinetics and folding pathways of intramolecular G-Quadruplex nucleic acids. J. Am. Chem. Soc. 2012; 134:19297–19308. PubMed

Gray R.D., Trent J.O., Arumugam S., Chaires J.B.. Folding landscape of a parallel G-Quadruplex. J. Phys. Chem. Lett. 2019; 10:1146–1151. PubMed PMC

Mergny J., Lacroix L.. UV melting of G-quadruplexes. Curr. Protoc. Nucleic Acid Chem. 2009; doi:10.1002/0471142700.nc1701s37. PubMed

Harkness V R.W., Avakyan N., Sleiman H.F., Mittermaier A.K.. Mapping the energy landscapes of supramolecular assembly by thermal hysteresis. Nat. Commun. 2018; 9:3152. PubMed PMC

Thirumalai D., Lee N., Woodson S.A., Klimov D. Early events in RNA folding. Annu. Rev. Phys. Chem. 2001; 52:751–762. PubMed

Thirumalai D., O’Brien E.P., Morrison G., Hyeon C.. Theoretical perspectives on protein folding. Annu. Rev. Biophys. 2010; 39:159–183. PubMed

Bessi I., Jonker H.R.A., Richter C., Schwalbe H. Involvement of long-lived intermediate states in the complex folding pathway of the human telomeric G-Quadruplex. Angew. Chem. Int. Ed. 2015; 54:8444–8448. PubMed

Šponer J., Islam B., Stadlbauer P., Haider S.. Molecular dynamics simulations of G-quadruplexes: the basic principles and their application to folding and ligand binding. Annual Reports in Medicinal Chemistry. 2020; 54:Elsevier; 197–241.

Šponer J., Bussi G., Stadlbauer P., Kührová P., Banáš P., Islam B., Haider S., Neidle S., Otyepka M.. Folding of guanine quadruplex molecules–funnel-like mechanism or kinetic partitioning? An overview from MD simulation studies. Biochim. Biophys. Acta BBA - Gen. Subj. 2017; 1861:1246–1263. PubMed

Sun D., Hurley L.H.. The importance of negative superhelicity in inducing the formation of G-Quadruplex and i-Motif structures in the c-Myc promoter: implications for drug targeting and control of gene expression. J. Med. Chem. 2009; 52:2863–2874. PubMed PMC

Sekibo D.A.T., Fox K.R. The effects of DNA supercoiling on G-quadruplex formation. Nucleic Acids Res. 2017; 45:12069–12079. PubMed PMC

Miller M.C., Buscaglia R., Chaires J.B., Lane A.N., Trent J.O.. Hydration is a major determinant of the G-quadruplex stability and conformation of the human telomere 3′ sequence of d(AG3 (TTAG3)3). J. Am. Chem. Soc. 2010; 132:17105–17107. PubMed

Buscaglia R., Miller M.C., Dean W.L., Gray R.D., Lane A.N., Trent J.O., Chaires J.B.. Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection. Nucleic Acids Res. 2013; 41:7934–7946. PubMed PMC

Hänsel R., Löhr F., Foldynová-Trantírková S., Bamberg E., Trantírek L., Dötsch V.. The parallel G-quadruplex structure of vertebrate telomeric repeat sequences is not the preferred folding topology under physiological conditions. Nucleic Acids Res. 2011; 39:5768–5775. PubMed PMC

Hänsel R., Foldynová-Trantírková S., Dötsch V., Trantírek L.. Chaires J.B., Graves D.. Investigation of quadruplex structure under physiological conditions using in-cell NMR. Quadruplex Nucleic Acids. 2012; 330:Berlin, Heidelberg: Springer; 47–65.Topics in Current Chemistry. PubMed

Dzatko S., Krafcikova M., Hänsel-Hertsch R., Fessl T., Fiala R., Loja T., Krafcik D., Mergny J.-L., Foldynova-Trantirkova S., Trantirek L.. Evaluation of the stability of DNA i-Motifs in the nuclei of living mammalian cells. Angew. Chem. Int. Ed Engl. 2018; 57:2165–2169. PubMed PMC

Limongelli V., De Tito S., Cerofolini L., Fragai M., Pagano B., Trotta R., Cosconati S., Marinelli L., Novellino E., Bertini I.et al. .. The G-triplex DNA. Angew. Chem. Int. Ed. 2013; 52:2269–2273. PubMed

Chung W.J., Heddi B., Schmitt E., Lim K.W., Mechulam Y., Phan A.T.. Structure of a left-handed DNA G-quadruplex. Proc. Natl. Acad. Sci. U.S.A. 2015; 112:2729–2733. PubMed PMC

Truong T.H.A., Winnerdy F.R., Phan A.T. An unprecedented knot-like G-quadruplex peripheral motif. Angew. Chem. Int. Ed. 2019; 58:13834–13839. PubMed

Winnerdy F.R., Bakalar B., Maity A., Vandana J.J., Mechulam Y., Schmitt E., Phan A.T.. NMR solution and X-ray crystal structures of a DNA molecule containing both right- and left-handed parallel-stranded G-quadruplexes. Nucleic Acids Res. 2019; 47:8272–8281. PubMed PMC

Maity A., Winnerdy F.R., Chang W.D., Chen G., Phan A.T.. Intra-locked G-quadruplex structures formed by irregular DNA G-rich motifs. Nucleic Acids Res. 2020; 48:3315–3327. PubMed PMC

Krafcikova M., Dzatko S., Caron C., Granzhan A., Fiala R., Loja T., Teulade-Fichou M.-P., Fessl T., Hänsel-Hertsch R., Mergny J.-L.et al. .. Monitoring DNA–Ligand interactions in living human cells using NMR spectroscopy. J. Am. Chem. Soc. 2019; 141:13281–13285. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...