Role of folding kinetics of secondary structures in telomeric G-overhangs in the regulation of telomere maintenance in Saccharomyces cerevisiae

. 2020 Jul 03 ; 295 (27) : 8958-8971. [epub] 20200508

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32385108
Odkazy

PubMed 32385108
PubMed Central PMC7335780
DOI 10.1074/jbc.ra120.012914
PII: S0021-9258(17)50320-8
Knihovny.cz E-zdroje

The ends of eukaryotic chromosomes typically contain a 3' ssDNA G-rich protrusion (G-overhang). This overhang must be protected against detrimental activities of nucleases and of the DNA damage response machinery and participates in the regulation of telomerase, a ribonucleoprotein complex that maintains telomere integrity. These functions are mediated by DNA-binding proteins, such as Cdc13 in Saccharomyces cerevisiae, and the propensity of G-rich sequences to form various non-B DNA structures. Using CD and NMR spectroscopies, we show here that G-overhangs of S. cerevisiae form distinct Hoogsteen pairing-based secondary structures, depending on their length. Whereas short telomeric oligonucleotides form a G-hairpin, their longer counterparts form parallel and/or antiparallel G-quadruplexes (G4s). Regardless of their topologies, non-B DNA structures exhibited impaired binding to Cdc13 in vitro as demonstrated by electrophoretic mobility shift assays. Importantly, whereas G4 structures formed relatively quickly, G-hairpins folded extremely slowly, indicating that short G-overhangs, which are typical for most of the cell cycle, are present predominantly as single-stranded oligonucleotides and are suitable substrates for Cdc13. Using ChIP, we show that the occurrence of G4 structures peaks at the late S phase, thus correlating with the accumulation of long G-overhangs. We present a model of how time- and length-dependent formation of non-B DNA structures at chromosomal termini participates in telomere maintenance.

Zobrazit více v PubMed

Muller H. J. (1938) The remaking of chromosomes. Collect. Net. 8, 182–198

McClintock B. (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 PubMed PMC

de Lange T. (2018) Shelterin-mediated telomere protection. Annu. Rev. Genet. 52, 223–247 10.1146/annurev-genet-032918-021921 PubMed DOI

Olovnikov A. M. (1971) [Principle of marginotomy in template synthesis of polynucleotides]. Dokl. Akad. Nauk SSSR 201, 1496–1499 PubMed

Olovnikov A. M. (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 41, 181–190 10.1016/0022-5193(73)90198-7 PubMed DOI

Watson J. D. (1972) Origin of concatemeric T7 DNA. Nat. New Biol. 239, 197–201 10.1038/newbio239197a0 PubMed DOI

Meyne J., Ratliff R. L., and Moyzis R. K. (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. U.S.A. 86, 7049–7053 10.1073/pnas.86.18.7049 PubMed DOI PMC

Gunišová S., Elboher E., Nosek J., Gorkovoy V., Brown Y., Lucier J.-F., Laterreur N., Wellinger R. J., Tzfati Y., and Tomáška L. (2009) Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA 15, 546–559 10.1261/rna.1194009 PubMed DOI PMC

Cohn M., McEachern M. J., and Blackburn E. H. (1998) Telomeric sequence diversity within the genus Saccharomyces. Curr. Genet. 33, 83–91 10.1007/s002940050312 PubMed DOI

Henderson E. R., and Blackburn E. H. (1989) An overhanging 3′ terminus is a conserved feature of telomeres. Mol. Cell Biol. 9, 345–348 10.1128/MCB.9.1.345 PubMed DOI PMC

McElligott R., and Wellinger R. J. (1997) The terminal DNA structure of mammalian chromosomes. EMBO J. 16, 3705–3714 10.1093/emboj/16.12.3705 PubMed DOI PMC

Lustig A. J. (2019) Towards the mechanism of yeast telomere dynamics. Trends Cell Biol. 29, 361–370 10.1016/j.tcb.2019.01.005 PubMed DOI PMC

Blackburn E. H., and Collins K. (2011) Telomerase: an RNP enzyme synthesizes DNA. Cold Spring Harb. Perspect. Biol. 3, a003558 10.1101/cshperspect.a003558 PubMed DOI PMC

Greider C. W., and Blackburn E. H. (1985) Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43, 405–413 10.1016/0092-8674(85)90170-9 PubMed DOI

Greider C. W., and Blackburn E. H. (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887–898 10.1016/0092-8674(87)90576-9 PubMed DOI

Lue N. F. (2018) Evolving linear chromosomes and telomeres: a C-strand-centric view. Trends Biochem. Sci. 43, 314–326 10.1016/j.tibs.2018.02.008 PubMed DOI PMC

Školáková P., Foldynová-Trantírková S., Bednářová K., Fiala R., Vorlíčková M., and Trantírek L. (2015) Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA. Nucleic Acids Res. 43, 4733–4745 10.1093/nar/gkv296 PubMed DOI PMC

Sundquist W. I., and Klug A. (1989) Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342, 825–829 10.1038/342825a0 PubMed DOI

Tran P. L. T., Mergny J.-L., and Alberti P. (2011) Stability of telomeric G-quadruplexes. Nucleic Acids Res. 39, 3282–3294 10.1093/nar/gkq1292 PubMed DOI PMC

Williamson J. R., Raghuraman M. K., and Cech T. R. (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59, 871–880 10.1016/0092-8674(89)90610-7 PubMed DOI

Oganesian L., Moon I. K., Bryan T. M., and Jarstfer M. B. (2006) Extension of G-quadruplex DNA by ciliate telomerase. EMBO J. 25, 1148–1159 10.1038/sj.emboj.7601006 PubMed DOI PMC

Paeschke K., Juranek S., Simonsson T., Hempel A., Rhodes D., and Lipps H. J. (2008) Telomerase recruitment by the telomere end binding protein-β facilitates G-quadruplex DNA unfolding in ciliates. Nat. Struct. Mol. Biol. 15, 598–604 10.1038/nsmb.1422 PubMed DOI

Tang J., Kan Z. Y., Yao Y., Wang Q., Hao Y. H., and Tan Z. (2008) G-quadruplex preferentially forms at the very 3′ end of vertebrate telomeric DNA. Nucleic Acids Res. 36, 1200–1208 10.1093/nar/gkm1137 PubMed DOI PMC

Zahler A. M., Williamson J. R., Cech T. R., and Prescott D. M. (1991) Inhibition of telomerase by G-quartet DMA structures. Nature 350, 718–720 10.1038/350718a0 PubMed DOI

Zaug A. J., Podell E. R., and Cech T. R. (2005) Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro. Proc. Natl. Acad. Sci. U.S.A. 102, 10864–10869 10.1073/pnas.0504744102 PubMed DOI PMC

Fry M., and Loeb L. A. (1999) Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J. Biol. Chem. 274, 12797–12802 10.1074/jbc.274.18.12797 PubMed DOI

Sanders C. M. (2010) Human Pif1 helicase is a G-quadruplex DNA-binding protein with G-quadruplex DNA-unwinding activity. Biochem. J. 430, 119–128 10.1042/BJ20100612 PubMed DOI

Paeschke K., Bochman M. L., Garcia P. D., Cejka P., Friedman K. L., Kowalczykowski S. C., and Zakian V. A. (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497, 458–462 10.1038/nature12149 PubMed DOI PMC

Sun H., Karow J. K., Hickson I. D., and Maizels N. (1998) The Bloom's syndrome helicase unwinds G4 DNA. J. Biol. Chem. 273, 27587–27592 10.1074/jbc.273.42.27587 PubMed DOI

Sun H., Bennett R. J., and Maizels N. (1999) The Saccharomyces cerevisiae Sgs1 helicase efficiently unwinds G-G paired DNAs. Nucleic Acids Res. 27, 1978–1984 10.1093/nar/27.9.1978 PubMed DOI PMC

Ribeyre C., Lopes J., Boulé J.-B., Piazza A., Guédin A., Zakian V. A., Mergny J.-L., and Nicolas A. (2009) The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 5, e1000475 10.1371/journal.pgen.1000475 PubMed DOI PMC

Li Q.-J., Tong X.-J., Duan Y.-M., and Zhou J.-Q. (2013) Characterization of the intramolecular G-quadruplex promoting activity of Est1. FEBS Lett. 587, 659–665 10.1016/j.febslet.2013.01.024 PubMed DOI

Zhang M.-L., Tong X.-J., Fu X.-H., Zhou B. O., Wang J., Liao X.-H., Li Q.-J., Shen N., Ding J., and Zhou J.-Q. (2010) Yeast telomerase subunit Est1p has guanine quadruplex-promoting activity that is required for telomere elongation. Nat. Struct. Mol. Biol. 17, 202–209 10.1038/nsmb.1760 PubMed DOI

Moye A. L., Porter K. C., Cohen S. B., Phan T., Zyner K. G., Sasaki N., Lovrecz G. O., Beck J. L., and Bryan T. M. (2015) Telomeric G-quadruplexes are a substrate and site of localization for human telomerase. Nat. Commun. 6, 7643 10.1038/ncomms8643 PubMed DOI PMC

D'Ambrosio D., Reichenbach P., Micheli E., Alvino A., Franceschin M., Savino M., and Lingner J. (2012) Specific binding of telomeric G-quadruplexes by hydrosoluble perylene derivatives inhibits repeat addition processivity of human telomerase. Biochimie 94, 854–863 10.1016/j.biochi.2011.12.004 PubMed DOI

Sun D., Thompson B., Cathers B. E., Salazar M., Kerwin S. M., Trent J. O., Jenkins T. C., Neidle S., and Hurley L. H. (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J. Med. Chem. 40, 2113–2116 10.1021/jm970199z PubMed DOI

Tauchi T., Shin-ya K., Sashida G., Sumi M., Okabe S., Ohyashiki J. H., and Ohyashiki K. (2006) Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene 25, 5719–5725 10.1038/sj.onc.1209577 PubMed DOI

Yadav K., Meka P. N. R., Sadhu S., Guggilapu S. D., Kovvuri J., Kamal A., Srinivas R., Devayani P., Babu B. N., and Nagesh N. (2017) Telomerase inhibition and human telomeric G-quadruplex DNA stabilization by a β-carboline-benzimidazole derivative at low concentrations. Biochemistry 56, 4392–4404 10.1021/acs.biochem.7b00008 PubMed DOI

Giraldo R., and Rhodes D. (1994) The yeast telomere-binding protein RAP1 binds to and promotes the formation of DNA quadruplexes in telomeric DNA. EMBO J. 13, 2411–2420 10.1002/j.1460-2075.1994.tb06526.x PubMed DOI PMC

Giraldo R., Suzuki M., Chapman L., and Rhodes D. (1994) Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study. Proc. Natl. Acad. Sci. U.S.A. 91, 7658–7662 10.1073/pnas.91.16.7658 PubMed DOI PMC

Lin Y. C., Shih J. W., Hsu C. L., and Lin J. J. (2001) Binding and partial denaturing of G-quartet DNA by Cdc13p of Saccharomyces cerevisiae. J. Biol. Chem. 276, 47671–47674 10.1074/jbc.M104989200 PubMed DOI

Smith J. S., Chen Q., Yatsunyk L. A., Nicoludis J. M., Garcia M. S., Kranaster R., Balasubramanian S., Monchaud D., Teulade-Fichou M.-P., Abramowitz L., Schultz D. C., and Johnson F. B. (2011) Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 18, 478–485 10.1038/nsmb.2033 PubMed DOI PMC

Makarov V. L., Hirose Y., and Langmore J. P. (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666 10.1016/S0092-8674(00)81908-X PubMed DOI

Wright W. E., Tesmer V. M., Huffman K. E., Levene S. D., and Shay J. W. (1997) Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809 10.1101/gad.11.21.2801 PubMed DOI PMC

Kan Z., Lin Y., Wang F., Zhuang X., Zhao Y., Pang D., Hao Y., and Tan Z. (2007) G-quadruplex formation in human telomeric (TTAGGG)4 sequence with complementary strand in close vicinity under molecularly crowded condition. Nucleic Acids Res. 35, 3646–3653 10.1093/nar/gkm203 PubMed DOI PMC

Larrivée M., LeBel C., and Wellinger R. J. (2004) The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev. 18, 1391–1396 10.1101/gad.1199404 PubMed DOI PMC

Wellinger R. J., Wolf A. J., and Zakian V. A. (1993) Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72, 51–60 10.1016/0092-8674(93)90049-V PubMed DOI

Gajarský M., Živković M. L., Stadlbauer P., Pagano B., Fiala R., Amato J., Tomáška L., Šponer J., Plavec J., and Trantírek L. (2017) Structure of a stable G-hairpin. J. Am. Chem. Soc. 139, 3591–3594 10.1021/jacs.6b10786 PubMed DOI

Bessi I., Jonker H. R. A., Richter C., and Schwalbe H. (2015) Involvement of long-lived intermediate states in the complex folding pathway of the human telomeric G-quadruplex. Angew. Chem. Int. Ed. Engl. 54, 8444–8448 10.1002/anie.201502286 PubMed DOI

Chandra A., Hughes T. R., Nugent C. I., and Lundblad V. (2001) Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 15, 404–414 10.1101/gad.861001 PubMed DOI PMC

Garvik B., Carson M., and Hartwell L. (1995) Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the Rad9 checkpoint. Mol. Cell Biol. 15, 6128–6138 10.1128/MCB.15.11.6128 PubMed DOI PMC

Nugent C. I., Hughes T. R., Lue N. F., and Lundblad V. (1996) Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 10.1126/science.274.5285.249 PubMed DOI

Wellinger R. J., Ethier K., Labrecque P., and Zakian V. A. (1996) Evidence for a new step in telomere maintenance. Cell 85, 423–433 10.1016/S0092-8674(00)81120-4 PubMed DOI

Lewis K. A., Pfaff D. A., Earley J. N., Altschuler S. E., and Wuttke D. S. (2014) The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain. Nucleic Acids Res. 42, 475–484 10.1093/nar/gkt843 PubMed DOI PMC

Anderson E. M., Halsey W. A., and Wuttke D. S. (2002) Delineation of the high-affinity single-stranded telomeric DNA-binding domain of Saccharomyces cerevisiae Cdc13. Nucleic Acids Res. 30, 4305–4313 10.1093/nar/gkf554 PubMed DOI PMC

Hughes T. R., Weilbaecher R. G., Walterscheid M., and Lundblad V. (2000) Identification of the single-strand telomeric DNA binding domain of the Saccharomyces cerevisiae Cdc13 protein. Proc. Natl. Acad. Sci. U.S.A. 97, 6457–6462 10.1073/pnas.97.12.6457 PubMed DOI PMC

Biffi G., Tannahill D., McCafferty J., and Balasubramanian S. (2013) Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 10.1038/nchem.1548 PubMed DOI PMC

Piazza A., Boulé J.-B., Lopes J., Mingo K., Largy E., Teulade-Fichou M.-P., and Nicolas A. (2010) Genetic instability triggered by G-quadruplex interacting Phen-DC compounds in Saccharomyces cerevisiae. Nucleic Acids Res. 38, 4337–4348 10.1093/nar/gkq136 PubMed DOI PMC

Grandin N., Damon C., and Charbonneau M. (2001) Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20, 1173–1183 10.1093/emboj/20.5.1173 PubMed DOI PMC

Holstein E.-M., Clark K. R. M., and Lydall D. (2014) Interplay between nonsense-mediated mRNA decay and DNA damage response pathways reveals that Stn1 and Ten1 are the key CST telomere-cap components. Cell Rep. 7, 1259–1269 10.1016/j.celrep.2014.04.017 PubMed DOI PMC

Lin J. J., and Zakian V. A. (1996) The Saccharomyces Cdc13 protein is a single-strand TG1-3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. U.S.A. 93, 13760–13765 10.1073/pnas.93.24.13760 PubMed DOI PMC

Gao H., Cervantes R. B., Mandell E. K., Otero J. H., and Lundblad V. (2007) RPA-like proteins mediate yeast telomere function. Nat. Struct. Mol. Biol. 14, 208–214 10.1038/nsmb1205 PubMed DOI

Sun J., Yu E. Y., Yang Y., Confer L. A., Sun S. H., Wan K., Lue N. F., and Lei M. (2009) Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres. Genes Dev. 23, 2900–2914 10.1101/gad.1851909 PubMed DOI PMC

Hang L. E., Liu X., Cheung I., Yang Y., and Zhao X. (2011) SUMOylation regulates telomere length homeostasis by targeting Cdc13. Nat. Struct. Mol. Biol. 18, 920–926 10.1038/nsmb.2100 PubMed DOI PMC

Li S., Makovets S., Matsuguchi T., Blethrow J. D., Shokat K. M., and Blackburn E. H. (2009) Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 136, 50–61 10.1016/j.cell.2008.11.027 PubMed DOI PMC

Shen Z.-J., Hsu P.-H., Su Y.-T., Yang C.-W., Kao L., Tseng S.-F., Tsai M.-D., and Teng S.-C. (2014) PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nat. Commun. 5, 5312 10.1038/ncomms6312 PubMed DOI

Gopalakrishnan V., Tan C. R., and Li S. (2017) Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication. Cell Cycle 16, 1271–1287 10.1080/15384101.2017.1312235 PubMed DOI PMC

Liu C.-C., Gopalakrishnan V., Poon L.-F., Yan T., and Li S. (2014) Cdk1 regulates the temporal recruitment of telomerase and Cdc13-Stn1-Ten1 complex for telomere replication. Mol. Cell Biol. 34, 57–70 10.1128/MCB.01235-13 PubMed DOI PMC

Mullins M. R., Rajavel M., Hernandez-Sanchez W., de la Fuente M., Biendarra S. M., Harris M. E., and Taylor D. J. (2016) POT1-TPP1 binding and unfolding of telomere DNA discriminates against structural polymorphism. J. Mol. Biol. 428, 2695–2708 10.1016/j.jmb.2016.04.031 PubMed DOI PMC

Traczyk A., Liew C. W., Gill D. J., and Rhodes D. (2020) Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1. Nucleic Acids Res. 48, 4562–4571 10.1093/nar/gkaa171 PubMed DOI PMC

Rigo R., Dean W. L., Gray R. D., Chaires J. B., and Sissi C. (2017) Conformational profiling of a G-rich sequence within the c-KIT promoter. Nucleic Acids Res. 45, 13056–13067 10.1093/nar/gkx983 PubMed DOI PMC

Boulé J.-B., Vega L. R., and Zakian V. A. (2005) The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438, 57–61 10.1038/nature04091 PubMed DOI

Qi H., and Zakian V. A. (2000) The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev. 14, 1777–1788 PubMed PMC

Bhattacharjee A., Wang Y., Diao J., and Price C. M. (2017) Dynamic DNA binding, junction recognition and G4 melting activity underlie the telomeric and genome-wide roles of human CST. Nucleic Acids Res. 45, 12311–12324 10.1093/nar/gkx878 PubMed DOI PMC

Zhang M., Wang B., Li T., Liu R., Xiao Y., Geng X., Li G., Liu Q., Price C. M., Liu Y., and Wang F. (2019) Mammalian CST averts replication failure by preventing G-quadruplex accumulation. Nucleic Acids Res. 47, 5243–5259 10.1093/nar/gkz264 PubMed DOI PMC

Bradford M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 10.1016/0003-2697(76)90527-3 PubMed DOI

Sklenář V., and Bax A. (1987) Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra. J. Magn. Reson. 74, 469–479 10.1016/0022-2364(87)90269-1 DOI

Hänsel-Hertsch R., Spiegel J., Marsico G., Tannahill D., and Balasubramanian S. (2018) Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat. Protoc. 13, 551–564 10.1038/nprot.2017.150 PubMed DOI

De Magis A., Manzo S. G., Russo M., Marinello J., Morigi R., Sordet O., and Capranico G. (2019) DNA damage and genome instability by G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl. Acad. Sci. U.S.A. 116, 816–825 10.1073/pnas.1810409116 PubMed DOI PMC

Graf M., Bonetti D., Lockhart A., Serhal K., Kellner V., Maicher A., Jolivet P., Teixeira M. T., and Luke B. (2017) Telomere length determines TERRA and R-loop regulation through the cell cycle. Cell 170, 72–85.e14 10.1016/j.cell.2017.06.006 PubMed DOI

Wanzek K., Schwindt E., Capra J. A., and Paeschke K. (2017) Mms1 binds to G-rich regions in Saccharomyces cerevisiae and influences replication and genome stability. Nucleic Acids Res. 45, 7796–7806 10.1093/nar/gkx467 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...