Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25855805
PubMed Central
PMC4482068
DOI
10.1093/nar/gkv296
PII: gkv296
Knihovny.cz E-zdroje
- MeSH
- Caenorhabditis elegans genetika MeSH
- DNA chemie MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- telomery chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10-15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5'-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5'-C-rich and 3'-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model.
Zobrazit více v PubMed
Wright W.E., Tesmer V.M., Huffman K.E., Levene S.D., Shay J.W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 1997;11:2801–2809. PubMed PMC
Makarov V.L., Hirose Y., Langmore J.P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell. 1997;88:657–666. PubMed
Griffith J.D., Comeau L., Rosenfield S., Stansel R.M., Bianchi A., Moss H., de Lange T. Mammalian telomeres end in a large duplex loop. Cell. 1999;97:503–514. PubMed
Allsopp R.C., Vaziri H., Patterson C., Goldstein S., Younglai E.V., Futcher A.B., Greider C.W., Harley C.B. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1992;89:10114–10118. PubMed PMC
Engelhardt M., Martens U.M. The implication of telomerase activity and telomere stability for replicative aging and cellular immortality (Review) Oncol. Rep. 1998;5:1043–1052. PubMed
Aubert G., Lansdorp P.M. Telomeres and aging. Physiol. Rev. 2008;88:557–579. PubMed
Shore D., Bianchi A. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J. 2009;28:2309–2322. PubMed PMC
Greider C.W., Blackburn E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43:405–413. PubMed
Hiyama E., Hiyama K. Telomere and telomerase in stem cells. Br. J. Cancer. 2007;96:1020–1024. PubMed PMC
Kim N.W., Piatyszek M.A., Prowse K.R., Harley C.B., West M.D., Ho P.L., Coviello G.M., Wright W.E., Weinrich S.L., Shay J.W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266:2011–2015. PubMed
Lipps H.J., Rhodes D. G-quadruplex structures: in vivo evidence and function. Trends Cell. Biol. 2009;19:414–422. PubMed
Phan A.T. Human telomeric G-quadruplex: structures of DNA and RNA sequences. FEBS J. 2010;277:1107–1117. PubMed
Hansel R., Foldynova-Trantirkova S., Lohr F., Buck J., Bongartz E., Bamberg E., Schwalbe H., Dotsch V., Trantirek L. Evaluation of parameters critical for observing nucleic acids inside living Xenopus laevis oocytes by in-cell NMR spectroscopy. J. Am. Chem. Soc. 2009;131:15761–15768. PubMed
Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 2013;5:182–186. PubMed PMC
Zahler A.M., Williamson J.R., Cech T.R., Prescott D.M. Inhibition of telomerase by G-quartet DNA structures. Nature. 1991;350:718–720. PubMed
De Cian A., Lacroix L., Douarre C., Temime-Smaali N., Trentesaux C., Riou J.F., Mergny J.L. Targeting telomeres and telomerase. Biochimie. 2008;90:131–155. PubMed
Bryan T.M., Englezou A., Dalla-Pozza L., Dunham M.A., Reddel R.R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 1997;3:1271–1274. PubMed
Ogino H., Nakabayashi K., Suzuki M., Takahashi E., Fujii M., Suzuki T., Ayusawa D. Release of telomeric DNA from chromosomes in immortal human cells lacking telomerase activity. Biochem. Biophys. Res. Commun. 1998;248:223–227. PubMed
Cesare A.J., Reddel R.R. Alternative lengthening of telomeres: models, mechanisms and implications. Nat. Rev. Genet. 2010;11:319–330. PubMed
Oganesian L., Karlseder J. Mammalian 5′ C-rich telomeric overhangs are a mark of recombination-dependent telomere maintenance. Mol. Cell. 2011;42:224–236. PubMed PMC
Ahmed S., Kintanar A., Henderson E. Human telomeric C-strand tetraplexes. Nat. Struct. Biol. 1994;1:83–88. PubMed
Leroy J.L., Gueron M., Mergny J.L., Helene C. Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res. 1994;22:1600–1606. PubMed PMC
Gehring K., Leroy J.L., Gueron M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature. 1993;363:561–565. PubMed
Lieblein A.L., Kramer M., Dreuw A., Furtig B., Schwalbe H. The nature of hydrogen bonds in cytidine…H+…cytidine DNA base pairs. Angew. Chem. 2012;51:4067–4070. PubMed
Zhou J., Wei C., Jia G., Wang X., Feng Z., Li C. Formation of i-motif structure at neutral and slightly alkaline pH. Mol. Biosyst. 2010;6:580–586. PubMed
Raices M., Verdun R.E., Compton S.A., Haggblom C.I., Griffith J.D., Dillin A., Karlseder J. C. elegans telomeres contain G-strand and C-strand overhangs that are bound by distinct proteins. Cell. 2008;132:745–757. PubMed
Madshus I.H. Regulation of intracellular pH in eukaryotic cells. Biochem. J. 1988;250:1–8. PubMed PMC
Wadsworth W.G., Riddle D.L. Acidic intracellular pH shift during Caenorhabditis elegans larval development. Proc. Natl. Acad. Sci. U.S.A. 1988;85:8435–8438. PubMed PMC
Chen Y., Qu K., Zhao C., Wu L., Ren J., Wang J., Qu X. Insights into the biomedical effects of carboxylated single-wall carbon nanotubes on telomerase and telomeres. Nat. Commun. 2012;3:1074–1088. PubMed
Lackner D.H., Karlseder J. C. elegans survivors without telomerase. Worm. 2013;2:e21073. PubMed PMC
Shampay J., Szostak J.W., Blackburn E.H. DNA sequences of telomeres maintained in yeast. Nature. 1984;310:154–157. PubMed
Gray D.M., Hung S.H., Johnson K.H. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995;246:19–34. PubMed
Masse J.E., Bortmann P., Dieckmann T., Feigon J. Simple, efficient protocol for enzymatic synthesis of uniformly 13C, 15N-labeled DNA for heteronuclear NMR studies. Nucleic Acids Res. 1998;26:2618–2624. PubMed PMC
Fiala R., Spackova N., Foldynova-Trantirkova S., Sponer J., Sklenar V., Trantirek L. NMR cross-correlated relaxation rates reveal ion coordination sites in DNA. J. Am. Chem. Soc. 2011;133:13790–13793. PubMed
Piotto M., Saudek V., Sklenar V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR. 1992;2:661–665. PubMed
Vuister G.W., Bax A. Measurement of two-bond JCOH alpha coupling constants in proteins uniformly enriched with 13C. J. Biomol. NMR. 1992;2:401–405. PubMed
Santoro J., King G.C. A constant-time 2D overbodenhausen experiment for inverse correlation of isotopically enriched species. J. Mag. Reson. 1992;97:202–207.
Bohlen J.M., Bodenhausen G. Experimental aspects of Chirp NMR spectroscopy. J. Magn. Reson. 1993;102:293–301.
Sklenar V., Peterson R.D., Rejante M.R., Feigon J. Two- and three-dimensional HCN experiments for correlating base and sugar resonances in 15N,13C-labeled RNA oligonucleotides. J. Biomol. NMR. 1993;3:721–727. PubMed
Lippens G., Dhalluin C., Wieruszeski J.M. Use of a water flip-back pulse in the homonuclear NOESY experiment. J. Biomol. NMR. 1995;5:327–331. PubMed
Legault P., Farmer B.T., Mueller L., Pardi A. Through-bond correlation of adenine protons in a C-13-labeled ribozyme. J. Am. Chem. Soc. 1994;116:2203–2204.
Marino J.P., Prestegard J.H., Crothers D.M. Correlation of adenine H2/H8 resonances in uniformly C-13 labeled RNAs by 2D HCCH-TOCSY - A new tool for H-1 assignment. J. Am. Chem. Soc. 1994;116:2205–2206.
Dingley A.J., Grzesiek S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide (2)J(NN) couplings. J. Am. Chem. Soc. 1998;120:8293–8297.
Pervushin K., Ono A., Fernandez C., Szyperski T., Kainosho M., Wuthrich K. NMR scalar couplings across Watson-Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 1998;95:14147–14151. PubMed PMC
Dai J., Carver M., Yang D. Polymorphism of human telomeric quadruplex structures. Biochimie. 2008;90:1172–1183. PubMed PMC
Vorlickova M., Tomasko M., Sagi A.J., Bednarova K., Sagi J. 8-oxoguanine in a quadruplex of the human telomere DNA sequence. FEBS J. 2012;279:29–39. PubMed
Phan A.T., Mergny J.L. Human telomeric DNA: G-quadruplex, i-motif and Watson-Crick double helix. Nucleic Acids Res. 2002;30:4618–4625. PubMed PMC
Simonsson T., Pribylova M., Vorlickova M. A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures. Biochem. Biophys. Res. Commun. 2000;278:158–166. PubMed
Phan A.T., Leroy J.L. Intramolecular i-Motif Structures of Telomeric DNA. J. Biomol. Struct. Dyn. 2000;17(Suppl. 1):245–251. PubMed
Kypr J., Kejnovska I., Renciuk D., Vorlickova M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–1725. PubMed PMC
Legault P., Pardi A. In-situ probing of adenine protonation in RNA by C-13 NMR. J. Am. Chem. Soc. 1994;116:8390–8391.
Stefl R., Oberstrass F.C., Hood J.L., Jourdan M., Zimmermann M., Skrisovska L., Maris C., Peng L., Hofr C., Emeson R.B., et al. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell. 2010;143:225–237. PubMed PMC
Azarkh M., Singh V., Okle O., Dietrich D.R., Hartig J.S., Drescher M. Intracellular conformations of human telomeric quadruplexes studied by electron paramagnetic resonance spectroscopy. ChemPhysChem. 2012;13:1444–1447. PubMed
Hansel R., Lohr F., Trantirek L., Dotsch V. High-resolution insight into G-overhang architecture. J. Am. Chem. Soc. 2013;135:2816–2824. PubMed
Vorlickova M., Chladkova J., Kejnovska I., Fialova M., Kypr J. Guanine tetraplex topology of human telomere DNA is governed by the number of (TTAGGG) repeats. Nucleic Acids Res. 2005;33:5851–5860. PubMed PMC
Petraccone L., Spink C., Trent J.O., Garbett N.C., Mekmaysy C.S., Giancola C., Chaires J.B. Structure and stability of higher-order human telomeric quadruplexes. J. Am. Chem. Soc. 2011;133:20951–20961. PubMed PMC
Tran P.L., Mergny J.L., Alberti P. Stability of telomeric G-quadruplexes. Nucleic Acids Res. 2011;39:3282–3294. PubMed PMC
Mergny J.L., De Cian A., Ghelab A., Sacca B., Lacroix L. Kinetics of tetramolecular quadruplexes. Nucleic Acids Res. 2005;33:81–94. PubMed PMC
Cohn M. Molecular Diversity of Telomeric Sequences. In: Nosek J, Tomaska L, editors. Origin and Evolution of Telomeres. Landes Bioscience; 2008. pp. 70–82.
Gunisova S., Elboher E., Nosek J., Gorkovoy V., Brown Y., Lucier J.F., Laterreur N., Wellinger R.J., Tzfati Y., Tomaska L. Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA. 2009;15:546–559. PubMed PMC
Fajkus J., Sykorova E., Leitch A.R. Telomeres in evolution and evolution of telomeres. Chromosome Res. 2005;13:469–479. PubMed
Sykorova E., Lim K.Y., Kunicka Z., Chase M.W., Bennett M.D., Fajkus J., Leitch A.R. Telomere variability in the monocotyledonous plant order Asparagales. Proc. Biol. Sci. 2003;270:1893–1904. PubMed PMC
Rotkova G., Sklenickova M., Dvorackova M., Sykorova E., Leitch A.R., Fajkus J. An evolutionary change in telomere sequence motif within the plant section Asparagales had significance for telomere nucleoprotein complexes. Cytogenet Genome Res. 2004;107:132–138. PubMed
Tomaska L., Nosek J. Telomere heterogeneity: taking advantage of stochastic events. FEBS Lett. 2009;583:1067–1071. PubMed PMC
Garavis M., Gonzalez C., Villasante A. On the origin of the eukaryotic chromosome: the role of noncanonical DNA structures in telomere evolution. Genome Biol. Evol. 2013;5:1142–1150. PubMed PMC
Walter A., Chapuis C., Huet S., Ellenberg J. Crowded chromatin is not sufficient for heterochromatin formation and not required for its maintenance. J. Struct. Biol. 2013;184:445–453. PubMed
Bancaud A., Huet S., Daigle N., Mozziconacci J., Beaudouin J., Ellenberg J. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 2009;28:3785–3798. PubMed PMC
Rajendran A., Nakano S., Sugimoto N. Molecular crowding of the cosolutes induces an intramolecular i-motif structure of triplet repeat DNA oligomers at neutral pH. Chem. Commun. (Camb.) 2010;46:1299–1301. PubMed
Yu H.Q., Miyoshi D., Sugimoto N. Characterization of structure and stability of long telomeric DNA G-quadruplexes. J. Am. Chem. Soc. 2006;128:15461–15468. PubMed
Gray M.W., Lukes J., Archibald J.M., Keeling P.J., Doolittle W.F. Cell biology. Irremediable complexity. Science. 2010;330:920–921. PubMed
Bandiera A., Tell G., Marsich E., Scaloni A., Pocsfalvi G., Akintunde Akindahunsi A., Cesaratto L., Manzini G. Cytosine-block telomeric type DNA-binding activity of hnRNP proteins from human cell lines. Arch. Biochem. Biophys. 2003;409:305–314. PubMed
Fenn S., Du Z., Lee J.K., Tjhen R., Stroud R.M., James T.L. Crystal structure of the third KH domain of human poly(C)-binding protein-2 in complex with a C-rich strand of human telomeric DNA at 1.6 A resolution. Nucleic Acids Res. 2007;35:2651–2660. PubMed PMC
Fujimori J., Matsuo T., Shimose S., Kubo T., Ishikawa M., Yasunaga Y., Ochi M. Antitumor effects of telomerase inhibitor TMPyP4 in osteosarcoma cell lines. J. Orthop. Res. 2011;29:1707–1711. PubMed
Fedoroff O.Y., Rangan A., Chemeris V.V., Hurley L.H. Cationic porphyrins promote the formation of i-motif DNA and bind peripherally by a nonintercalative mechanism. Biochemistry. 2000;39:15083–15090. PubMed
Qin Y., Rezler E.M., Gokhale V., Sun D., Hurley L.H. Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4. Nucleic Acids Res. 2007;35:7698–7713. PubMed PMC
Wheelhouse R.T., Sun D.K., Han H.Y., Han F.X.G., Hurley L.H. Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA. J. Am. Chem. Soc. 1998;120:3261–3262.
Lackner D.H., Raices M., Maruyama H., Haggblom C., Karlseder J. Organismal propagation in the absence of a functional telomerase pathway in Caenorhabditis elegans. EMBO J. 2012;31:2024–2033. PubMed PMC
Cheng C., Shtessel L., Brady M.M., Ahmed S. Caenorhabditis elegans POT-2 telomere protein represses a mode of alternative lengthening of telomeres with normal telomere lengths. Proc. Natl. Acad. Sci. U.S.A. 2012;109:7805–7810. PubMed PMC
G-quadruplexes in helminth parasites
Insight into formation propensity of pseudocircular DNA G-hairpins
i-Motif of cytosine-rich human telomere DNA fragments containing natural base lesions
Evaluation of the Stability of DNA i-Motifs in the Nuclei of Living Mammalian Cells