Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26433223
PubMed Central
PMC4787745
DOI
10.1093/nar/gkv994
PII: gkv994
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- kationty chemie MeSH
- lidé MeSH
- Oxytricha genetika MeSH
- simulace molekulární dynamiky * MeSH
- telomery chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- kationty MeSH
DNA G-hairpins are potential key structures participating in folding of human telomeric guanine quadruplexes (GQ). We examined their properties by standard MD simulations starting from the folded state and long T-REMD starting from the unfolded state, accumulating ∼130 μs of atomistic simulations. Antiparallel G-hairpins should spontaneously form in all stages of the folding to support lateral and diagonal loops, with sub-μs scale rearrangements between them. We found no clear predisposition for direct folding into specific GQ topologies with specific syn/anti patterns. Our key prediction stemming from the T-REMD is that an ideal unfolded ensemble of the full GQ sequence populates all 4096 syn/anti combinations of its four G-stretches. The simulations can propose idealized folding pathways but we explain that such few-state pathways may be misleading. In the context of the available experimental data, the simulations strongly suggest that the GQ folding could be best understood by the kinetic partitioning mechanism with a set of deep competing minima on the folding landscape, with only a small fraction of molecules directly folding to the native fold. The landscape should further include non-specific collapse processes where the molecules move via diffusion and consecutive random rare transitions, which could, e.g. structure the propeller loops.
Zobrazit více v PubMed
Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A Highly Conserved Repetitive DNA Sequence, (TTAGGG)n, Present at the Telomeres of Human Chromosomes. Proc. Natl. Acad. Sci. U.S.A. 1988;85:6622–6626. PubMed PMC
Wright W.E., Tesmer V.M., Huffman K.E., Levene S.D., Shay J.W. Normal Human Chromosomes Have Long G-rich Telomeric Overhangs at One End. Genes Dev. 1997;11:2801–2809. PubMed PMC
Allsopp R.C., Vaziri H., Patterson C., Goldstein S., Younglai E.V., Futcher A.B., Greider C.W., Harley C.B. Telomere Length Predicts Replicative Capacity of Human Fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1992;89:10114–10118. PubMed PMC
Engelhardt M., Martens U.M. The Implication of Telomerase Activity and Telomere Stability for Replicative Aging and Cellular Immortality (Review) Oncol. Rep. 1998;5:1043–1052. PubMed
Aubert G., Lansdorp P.M. Telomeres and Aging. Physiol. Rev. 2008;88:557–579. PubMed
Greider C.W., Blackburn E.H. Identification of a Specific Telomere Terminal Transferase Activity in Tetrahymena Extracts. Cell. 1985;43:405–413. PubMed
Kim N., Piatyszek M., Prowse K., Harley C., West M., Ho P., Coviello G., Wright W., Weinrich S., Shay J. Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. Science. 1994;266:2011–2015. PubMed
Neidle S. Human Telomeric G-quadruplex: The Current Status of Telomeric G-quadruplexes as Therapeutic Targets in Human Cancer. Febs J. 2010;277:1118–1125. PubMed
Skolakova P., Foldynova-Trantirkova S., Bednarova K., Fiala R., Vorlickova M., Trantirek L. Unique C. elegans Telomeric Overhang Structures Reveal the Evolutionarily Conserved Properties of Telomeric DNA. Nucleic Acids Res. 2015;43:4733–4745. PubMed PMC
Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative Visualization of DNA G-quadruplex Structures in Human Cells. Nat. Chem. 2013;5:182–186. PubMed PMC
Lam E.Y.N., Beraldi D., Tannahill D., Balasubramanian S. G-quadruplex Structures Are Stable and Detectable in Human Genomic DNA. Nat. Commun. 2013;4:1796. PubMed PMC
Zahler A.M., Williamson J.R., Cech T.R., Prescott D.M. Inhibition of Telomerase by G-quartet DMA Structures. Nature. 1991;350:718–720. PubMed
Balasubramanian S., Neidle S. G-quadruplex Nucleic Acids as Therapeutic Targets. Curr. Opin. Chem. Biol. 2009;13:345–353. PubMed PMC
Huppert J.L., Balasubramanian S. G-quadruplexes in Promoters Throughout the Human Genome. Nucleic Acids Res. 2007;35:406–413. PubMed PMC
Qin M., Chen Z., Luo Q., Wen Y., Zhang N., Jiang H., Yang H. Two-Quartet G-Quadruplexes Formed by DNA Sequences Containing Four Contiguous GG Runs. J. Phys. Chem. B. 2015;119:3706–3713. PubMed
Huppert J.L. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem. Soc. Rev. 2008;37:1375–1384. PubMed
Duan X.-L., Liu N.-N., Yang Y.-T., Li H.-H., Li M., Dou S.-X., Xi X.-G. G-Quadruplexes Significantly Stimulate Pif1 Helicase-catalyzed Duplex DNA Unwinding. J. Biol. Chem. 2015;290:7722–7735. PubMed PMC
Cayrou C., Coulombe P., Puy A., Rialle S., Kaplan N., Segal E., Méchali M. New Insights into Replication Origin Characteristics in Metazoans. Cell Cycle. 2012;11:658–667. PubMed PMC
Paeschke K., Bochman M.L., Garcia P.D., Cejka P., Friedman K.L., Kowalczykowski S.C., Zakian V.A. Pif1 Family Helicases Suppress Genome Instability at G-Quadruplex Motifs. Nature. 2013;497:458–462. PubMed PMC
Leontis N.B., Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7:499–512. PubMed PMC
da Silva M.W. Geometric Formalism for DNA Quadruplex Folding. Chem. Eur. J. 2007;13:9738–9745. PubMed
Karsisiotis A.I., O'Kane C., da Silva M.W. DNA Quadruplex Folding Formalism - A Tutorial on Quadruplex Topologies. Methods. 2013;64:28–35. PubMed
Cang X.H., Sponer J., Cheatham T.E. Explaining the Varied Glycosidic Conformational, G-Tract Length and Sequence Preferences for Anti-Parallel G-Quadruplexes. Nucleic Acids Res. 2011;39:4499–4512. PubMed PMC
Sponer J., Mladek A., Spackova N., Cang X.H., Cheatham T.E., Grimme S. Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations. J. Am. Chem. Soc. 2013;135:9785–9796. PubMed PMC
Renciuk D., Kejnovska I., Skolakova P., Bednarova K., Motlova J., Vorlickova M. Arrangements of Human Telomere DNA Quadruplex in Physiologically Relevant K +Solutions. Nucleic Acids Res. 2009;37:6625–6634. PubMed PMC
Buscaglia R., Miller M.C., Dean W.L., Gray R.D., Lane A.N., Trent J.O., Chaires J.B. Polyethylene Glycol Binding Alters Human Telomere G-quadruplex Structure by Conformational Selection. Nucleic Acids Res. 2013;41:7934–7946. PubMed PMC
Haensel R., Loehr F., Foldynova-Trantirkova S., Bamberg E., Trantirek L., Doetsch V. The Parallel G-quadruplex Structure of Vertebrate Telomeric Repeat Sequences Is Not the Preferred Folding Topology under Physiological Conditions. Nucleic Acids Res. 2011;39:5768–5775. PubMed PMC
Haensel R., Loehr F., Trantirek L., Doetsch V. High-Resolution Insight into G-Overhang Architecture. J. Am. Chem. Soc. 2013;135:2816–2824. PubMed
Kejnovska I., Vorlickova M., Brazdova M., Sagi J. Stability of Human Telomere Quadruplexes at High DNA Concentrations. Biopolymers. 2014;101:428–438. PubMed
Lim K.W., Amrane S., Bouaziz S., Xu W., Mu Y., Patel D.J., Luu K.N., Phan A.T. Structure of the Human Telomere in K+ Solution: A Stable Basket-Type G-Quadruplex with Only Two G-Tetrad Layers. J. Am. Chem. Soc. 2009;131:4301–4309. PubMed PMC
Wang Y., Patel D.J. Solution Structure of the Human Telomeric Repeat d[AG(3)(T(2)AG(3))3] G-tetraplex. Structure. 1993;1:263–282. PubMed
Dai J., Carver M., Punchihewa C., Jones R.A., Yang D. Structure of the Hybrid-2 type Intramolecular Human Telomeric G-quadruplex in K+ Solution: Insights into Structure Polymorphism of the Human Telomeric Sequence. Nucleic Acids Res. 2007;35:4927–4940. PubMed PMC
Dai J., Punchihewa C., Ambrus A., Chen D., Jones R.A., Yang D. Structure of the Intramolecular Human Telomeric G-quadruplex in Potassium Solution: A Novel Adenine Triple Formation. Nucleic Acids Res. 2007;35:2440–2450. PubMed PMC
Parkinson G.N., Lee M.P.H., Neidle S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature. 2002;417:876–880. PubMed
Ambrus A., Chen D., Dai J.X., Bialis T., Jones R.A., Yang D.Z. Human Telomeric Sequence Forms a Hybrid-Type Intramolecular G-Quadruplex Structure with Mixed Parallel/Antiparallel Strands in Potassium Solution. Nucleic Acids Res. 2006;34:2723–2735. PubMed PMC
Lim K.W., Ng V.C.M., Martín-Pintado N., Heddi B., Phan A.T. Structure of the Human Telomere in Na+ Solution: An Antiparallel (2 + 2) G-quadruplex Scaffold Reveals Additional Diversity. Nucleic Acids Res. 2013;41:10556–10562. PubMed PMC
Abu-Ghazalah R.M., Rutledge S., Lau L.W.Y., Dubins D.N., Macgregor R.B., Helmy A.S. Concentration-Dependent Structural Transitions of Human Telomeric DNA Sequences. Biochemistry. 2012;51:7357–7366. PubMed
Luu K.N., Phan A.T., Kuryavyi V., Lacroix L., Patel D.J. Structure of the Human Telomere in K+ Solution: An Intramolecular (3 + 1) G-quadruplex Scaffold. J. Am. Chem. Soc. 2006;128:9963–9970. PubMed PMC
Phan A.T., Kuryavyi V., Luu K.N., Patel D.J. Structure of Two Intramolecular G-quadruplexes Formed by Natural Human Telomere Sequences in K+ Solution. Nucleic Acids Res. 2007;35:6517–6525. PubMed PMC
Gray R.D., Chaires J.B. Kinetics and Mechanism of K(+)- and Na(+)-induced Folding of Models of Human Telomeric DNA into G-quadruplex Structures. Nucleic Acids Res. 2008;36:4191–4203. PubMed PMC
Zhang A.Y.Q., Balasubramanian S. The Kinetics and Folding Pathways of Intramolecular G-Quadruplex Nucleic Acids. J. Am. Chem. Soc. 2012;134:19297–19308. PubMed
Gray R.D., Trent J.O., Chaires J.B. Folding and Unfolding Pathways of the Human Telomeric G-quadruplex. J. Mol. Biol. 2014;426:1629–1650. PubMed PMC
Bessi I., Jonker H.R., Richter C., Schwalbe H. Involvement of Long-Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G-Quadruplex. Angew. Chem., Int. Ed. 2015;54:8444–8448. PubMed
You H., Zeng X., Xu Y., Lim C.J., Efremov A.K., Phan A.T., Yan J. Dynamics and Stability of Polymorphic Human Telomeric G-quadruplex under Tension. Nucleic Acids Res. 2014;42:8789–8795. PubMed PMC
Long X., Stone M.D. Kinetic Partitioning Modulates Human Telomere DNA G-Quadruplex Structural Polymorphism. PLoS One. 2013;8:e83420. PubMed PMC
Vorlickova M., Kejnovska I., Sagi J., Renciuk D., Bednarova K., Motlova J., Kypr J. Circular Dichroism and Guanine Quadruplexes. Methods. 2012;57:64–75. PubMed
Gray R.D., Li J., Chaires J.B. Energetics and Kinetics of a Conformational Switch in G-Quadruplex DNA. J. Phys. Chem. B. 2009;113:2676–2683. PubMed PMC
Palacky J., Vorlickova M., Kejnovska I., Mojzes P. Polymorphism of Human Telomeric Quadruplex Structure Controlled by DNA Concentration: A Raman Study. Nucleic Acids Res. 2013;41:1005–1016. PubMed PMC
Wang Z.-F., Li M.-H., Hsu S.-T.D., Chang T.-C. Structural Basis of Sodium–Potassium Exchange of a Human Telomeric DNA Quadruplex Without Topological Conversion. Nucleic Acids Res. 2014;42:4723–4733. PubMed PMC
Lee J.Y., Okumus B., Kim D.S., Ha T. Extreme Conformational Diversity in Human Telomeric DNA. Proc. Natl. Acad. Sci. U.S.A. 2005;102:18938–18943. PubMed PMC
Thirumalai D., O'Brien E.P., Morrison G., Hyeon C. Theoretical Perspectives on Protein Folding. Annu. Rev. Biophys. 2010;39:159–183. PubMed
Narayanan R., Zhu L., Velmurugu Y., Roca J., Kuznetsov S.V., Prehna G., Lapidus L.J., Ansari A. Exploring the Energy Landscape of Nucleic Acid Hairpins Using Laser Temperature-Jump and Microfluidic Mixing. J. Am. Chem. Soc. 2012;134:18952–18963. PubMed
Li H., Cao E.H., Gisler T. Force-induced Unfolding of Human Telomeric G-quadruplex: A Steered Molecular Dynamics Simulation Study. Biochem. Biophys. Res. Commun. 2009;379:70–75. PubMed
Bian Y., Tan C., Wang J., Sheng Y., Zhang J., Wang W. Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex. PLoS Comput. Biol. 2014;10:e1003562. PubMed PMC
Koirala D., Mashimo T., Sannohe Y., Yu Z.B., Mao H.B., Sugiyama H. Intramolecular Folding in Three Tandem Guanine Repeats of Human Telomeric DNA. Chem. Commun. 2012;48:2006–2008. PubMed
Mashimo T., Yagi H., Sannohe Y., Rajendran A., Sugiyama H. Folding Pathways of Human Telomeric Type-1 and Type-2 G-quadruplex Structures. J. Am. Chem. Soc. 2010;132:14910–14918. PubMed
Limongelli V., De Tito S., Cerofolini L., Fragai M., Pagano B., Trotta R., Cosconati S., Marinelli L., Novellino E., Bertini I., et al. The G-Triplex DNA. Angew. Chem., Int. Ed. 2013;52:2269–2273. PubMed
Stefl R., Cheatham T.E., Spackova N., Fadrna E., Berger I., Koca J., Sponer J. Formation Pathways of a Guanine-Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates. Biophys. J. 2003;85:1787–1804. PubMed PMC
Yang C., Jang S., Pak Y. Multiple Stepwise Pattern for Potential of Mean Force in Unfolding the Thrombin Binding Aptamer in Complex with Sr2+ J. Chem. Phys. 2011;135:225104. PubMed
Stadlbauer P., Krepl M., Cheatham T.E., Koca J., Sponer J. Structural Dynamics of Possible Late-Stage Intermediates in Folding of Quadruplex DNA Studied by Molecular Simulations. Nucleic Acids Res. 2013;41:7128–7143. PubMed PMC
Stadlbauer P., Trantirek L., Cheatham T.E., Koca J., Sponer J. Triplex Intermediates in Folding of Human Telomeric Quadruplexes Probed by Microsecond-scale Molecular Dynamics Simulations. Biochimie. 2014;105:22–35. PubMed
Kim E., Yang C., Pak Y. Free-energy Landscape of a Thrombin-binding DNA Aptamer in Aqueous Environment. J. Chem. Theory Comput. 2012;8:4845–4851. PubMed
Sponer J., Banas P., Jurecka P., Zgarbova M., Kuehrova P., Havrila M., Krepl M., Stadlbauer P., Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J. Phys. Chem. Lett. 2014;5:1771–1782. PubMed
Islam B., Sgobba M., Laughton C., Orozco M., Sponer J., Neidle S., Haider S. Conformational Dynamics of the Human Propeller Telomeric DNA Quadruplex on a Microsecond Time Scale. Nucleic Acids Res. 2013;41:2723–2735. PubMed PMC
Wei D., Husby J., Neidle S. Flexibility and Structural Conservation in a c-KIT G-quadruplex. Nucleic Acids Res. 2015;43:629–644. PubMed PMC
Reshetnikov R., Golovin A., Spiridonova V., Kopylov A., Sponer J. Structural Dynamics of Thrombin-Binding DNA Aptamer d(GGTTGGTGTGGTTGG) Quadruplex DNA Studied by Large-scale Explicit Solvent Simulations. J. Chem. Theory Comput. 2010;6:3003–3014. PubMed
Ghosh S., Jana J., Kar R.K., Chatterjee S., Dasgupta D. Plant Alkaloid Chelerythrine Induced Aggregation of Human Telomere Sequence-A Unique Mode of Association between a Small Molecule and a Quadruplex. Biochemistry. 2015;54:974–986. PubMed
Abrams C., Bussi G. Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration. Entropy. 2013;16:163–199.
Iacovelli F., Falconi M. Decoding the Conformation-linked Functional Properties of Nucleic Acids by the Use of Computational Tools. Febs J. 2015;282:3298–3310. PubMed
Lindorff-Larsen K., Piana S., Dror R.O., Shaw D.E. How Fast-Folding Proteins Fold. Science. 2011;334:517–520. PubMed
Best R.B., Hummer G., Eaton W.A. Native Contacts Determine Protein Folding Mechanisms in Atomistic Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013;110:17874–17879. PubMed PMC
Li Y., Liu C., Feng X., Xu Y., Liu B.-F. Ultrafast Microfluidic Mixer for Tracking the Early Folding Kinetics of Human Telomere G-Quadruplex. Anal. Chem. 2014;86:4333–4339. PubMed
Rajendran A., Endo M., Hidaka K., Sugiyama H. Direct and Single-Molecule Visualization of the Solution-State Structures of G-Hairpin and G-Triplex Intermediates. Angew. Chem. 2014;126:4191–4196. PubMed
Rajendran A., Endo M., Hidaka K., Teulade-Fichou M.-P., Mergny J.-L., Sugiyama H. Small Molecule Binding to a G-hairpin and a G-triplex: A New Insight into Anticancer Drug Design Targeting G-rich Regions. Chem. Commun. 2015;51:9181–9184. PubMed
Sugita Y., Okamoto Y. Replica-Exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 1999;314:141–151.
Dai J., Chen D., Jones R.A., Hurley L.H., Yang D. NMR Solution Structure of the Major G-quadruplex Structure Formed in the Human BCL2 Promoter Region. Nucleic Acids Res. 2006;34:5133–5144. PubMed PMC
Case D.A.D., Cheatham T.T.E., III, Simmerling C.L., Wang J.D., R.E.R.E. Luo R., Walker R., Zhang W., Merz K.M.R., Hayik S.S., Roitberg A., et al. AMBER 12. San Francisco: University of California; 2012.
Islam B., Stadlbauer P., Krepl M., Koca J., Neidle S., Haider S., Sponer J. Extended Molecular Dynamics of a c-kit Promoter Quadruplex. Nucleic Acids Res. 2015 doi:10.1093/nar/gkv785. PubMed PMC
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935.
Berendsen H.J.C., Grigera J.R., Straatsma T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987;91:6269–6271.
Florova P., Sklenovsky P., Banas P., Otyepka M. Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact. J. Chem. Theory Comput. 2010;6:3569–3579. PubMed
Joung I.S., Cheatham T.E. Determination of Alkali and Halide Monovalent Ion Parameters for Use In Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC
Aqvist J. Ion Water Interaction Potentials Derived from Free-Energy Perturbation Simulations. J. Phys. Chem. 1990;94:8021–8024.
Smith D.E., Dang L.X. Computer Simulations of NaCl Association in Polarizable Water. J. Chem. Phys. 1994;100:3757–3766.
Dang L.X., Kollman P.A. Free Energy of Association of the K + 18-crown-6 complex in Water - A New Molecular Dynamics Study. J. Phys. Chem. 1995;99:55–58.
Noy A., Soteras I., Luque F.J., Orozco M. The Impact of Monovalent Ion Force Field Model in Nucleic Acids Simulations. Phys. Chem. Chem. Phys. 2009;11:10596–10607. PubMed
Sponer J., Cang X.H., Cheatham T.E. Molecular Dynamics Simulations of G-DNA and Perspectives on the Simulation of Nucleic Acid Structures. Methods. 2012;57:25–39. PubMed PMC
Perez A., Marchan I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M. Refinenement of the AMBER Force Field for Nucleic Acids: Improving the Description of Alpha/Gamma Conformers. Biophys. J. 2007;92:3817–3829. PubMed PMC
Krepl M., Zgarbova M., Stadlbauer P., Otyepka M., Banas P., Koca J., Cheatham T.E., Jurecka P., Sponer J. Reference Simulations of Noncanonical Nucleic Acids with Different Chi Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012;8:2506–2520. PubMed PMC
Zgarbova M., Luque F.J., Sponer J., Cheatham T.E., Otyepka M., Jurecka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013;9:2339–2354. PubMed PMC
Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995;117:5179–5197.
Cieplak P., Cornell W.D., Bayly C., Kollman P.A. Application of the Multimolecule and Multiconformational RESP Methodology to Biopolymers - Charge Derivation for DNA, RNA, and Proteins. J. Comput. Chem. 1995;16:1357–1377.
Wang J.M., Cieplak P., Kollman P.A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules. J. Comput. Chem. 2000;21:1049–1074.
Darden T., York D., Pedersen L. Particle Mesh Ewald - An N.log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993;98:10089–10092.
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995;103:8577–8593.
Berendsen H.J.C., Postma J.P.M., Vangunsteren W.F., Dinola A., Haak J.R. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984;81:3684–3690.
Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical Integration of Cartesian Equations of Motion of a System with Constraints - Molecular Dynamics of N-alkans. J. Comput. Phys. 1977;23:327–341.
Dang L.X. Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study. J. Am. Chem. Soc. 1995;117:6954–6960.
Rosta E., Buchete N.-V., Hummer G. Thermostat Artifacts in Replica Exchange Molecular Dynamics Simulations. J. Chem. Theory Comput. 2009;5:1393–1399. PubMed PMC
Fadrna E., Spackova N., Sarzynska J., Koca J., Orozco M., Cheatham T.E., Kulinski T., Sponer J. Single Stranded Loops of Quadruplex DNA as Key Benchmark for Testing Nucleic Acids Force Fields. J. Chem. Theory Comput. 2009;5:2514–2530. PubMed
Rachwal P.A., Brown T., Fox K.R. Sequence Effects of Single Base Loops in Intramolecular Quadruplex DNA. Febs Lett. 2007;581:1657–1660. PubMed
Smargiasso N., Rosu F., Hsia W., Colson P., Baker E.S., Bowers M.T., De Pauw E., Gabelica V. G-quadruplex DNA Assemblies: Loop Length, Cation Identity, and Multimer Formation. J. Am. Chem. Soc. 2008;130:10208–10216. PubMed
Rachwal P.A., Brown T., Fox K.R. Effect of G-tract Length on the Topology and Stability of Intramolecular DNA Quadruplexes. Biochemistry. 2007;46:3036–3044. PubMed
Rachwal P.A., Findlow I.S., Werner J.M., Brown T., Fox K.R. Intramolecular DNA Quadruplexes with Different Arrangements of Short and Long Loops. Nucleic Acids Res. 2007;35:4214–4222. PubMed PMC
Bugaut A., Balasubramanian S. A Sequence-Independent Study of the Influence of Short Loop Lengths on the Stability and Topology of Intramolecular DNA G-quadruplexes. Biochemistry. 2008;47:689–697. PubMed PMC
Mladek A., Krepl M., Svozil D., Cech P., Otyepka M., Banas P., Zgarbova M., Jurecka P., Sponer J. Benchmark Quantum-chemical Calculations on a Complete Set of Rotameric Families of the DNA Sugar-phosphate Backbone and Their Comparison with Modern Density Functional Theory. Phys. Chem. Chem. Phys. 2013;15:7295–7310. PubMed
Zgarbova M., Otyepka M., Sponer J., Lankas F., Jurecka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014;10:3177–3189. PubMed
Best R.B., Hummer G. Reaction Coordinates and Rates from Transition Paths. Proc. Natl. Acad. Sci. U.S.A. 2005;102:6732–6737. PubMed PMC
Portella G., Orozco M. Multiple Routes to Characterize the Folding of a Small DNA Hairpin. Angew. Chem., Int. Ed. 2010;49:7673–7676. PubMed
Kannan S., Zacharias M. Folding of a DNA Hairpin Loop Structure in Explicit Solvent Using Replica-Exchange Molecular Dynamics Simulations. Biophys. J. 2007;93:3218–3228. PubMed PMC
Kuehrova P., Banas P., Best R.B., Sponer J., Otyepka M. Computer Folding of RNA Tetraloops? Are We There Yet. J. Chem. Theory Comput. 2013;9:2115–2125. PubMed
Chen A.A., Garcia A.E. High-Resolution Reversible Folding of Hyperstable RNA Tetraloops Using Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013;110:16820–16825. PubMed PMC
Bergonzo C., Henriksen N.M., Roe D.R., Swails J.M., Roitberg A.E., Cheatham T.E. Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide. J. Chem. Theory Comput. 2013;10:492–499. PubMed PMC
Bergonzo C., Henriksen N.M., Roe D.R., Cheatham T.E. Highly Sampled Tetranucleotide and Tetraloop Motifs Enable Evaluation of Common RNA Force Fields. RNA. 2015;21:1578–1590. PubMed PMC
Ceru S., Sket P., Prislan I., Lah J., Plavec J. A New Pathway of DNA G-Quadruplex Formation. Angew. Chem., Int. Ed. 2014;53:4881–4884. PubMed
Li W., Hou X.-M., Wang P.-Y., Xi X.-G., Li M. Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G-quadruplex Structures. J. Am. Chem. Soc. 2013;135:6423–6426. PubMed
Gray R.D., Buscaglia R., Chaires J.B. Populated Intermediates in the Thermal Unfolding of the Human Telomeric Quadruplex. J. Am. Chem. Soc. 2012;134:16834–16844. PubMed PMC
Marchand A., Ferreira R., Tateishi-Karimata H., Miyoshi D., Sugimoto N., Gabelica V. Sequence and Solvent Effects on Telomeric DNA Bimolecular G-Quadruplex Folding Kinetics. J. Phys. Chem. B. 2013;117:12391–12401. PubMed
Thirumalai D., Woodson S.A. Kinetics of Folding of Proteins and RNA. Acc. Chem. Res. 1996;29:433–439.
Mukundan V.T., Phan A.T. Bulges in G-Quadruplexes: Broadening the Definition of G-Quadruplex-Forming Sequences. J. Am. Chem. Soc. 2013;135:5017–5028. PubMed
Ansari A., Kuznetsov S.V., Shen Y. Configurational Diffusion Down a Folding Funnel Describes the Dynamics of DNA Hairpins. Proc. Natl. Acad. Sci. U.S.A. 2001;98:7771–7776. PubMed PMC
Jung J., Van Orden A. A Three-State Mechanism for DNA Hairpin Folding Characterized by Multiparameter Fluorescence Fluctuation Spectroscopy. J. Am. Chem. Soc. 2006;128:1240–1249. PubMed
Boncina M., Lah J., Prislan I., Vesnaver G. Energetic Basis of Human Telomeric DNA Folding into G-quadruplex Structures. J. Am. Chem. Soc. 2012;134:9657–9663. PubMed
Cragnolini T., Derreumaux P., Pasquali S. Coarse-Grained Simulations of RNA and DNA Duplexes. J. Phys. Chem. B. 2013;117:8047–8060. PubMed
Chakraborty D., Collepardo-Guevara R., Wales D.J. Energy Landscapes, Folding Mechanisms, and Kinetics of RNA Tetraloop Hairpins. J. Am. Chem. Soc. 2014;136:18052–18061. PubMed
Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space
Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations
Insight into formation propensity of pseudocircular DNA G-hairpins
Structural dynamics of propeller loop: towards folding of RNA G-quadruplex