Hairpins participating in folding of human telomeric sequence quadruplexes studied by standard and T-REMD simulations

. 2015 Nov 16 ; 43 (20) : 9626-44. [epub] 20151003

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26433223

DNA G-hairpins are potential key structures participating in folding of human telomeric guanine quadruplexes (GQ). We examined their properties by standard MD simulations starting from the folded state and long T-REMD starting from the unfolded state, accumulating ∼130 μs of atomistic simulations. Antiparallel G-hairpins should spontaneously form in all stages of the folding to support lateral and diagonal loops, with sub-μs scale rearrangements between them. We found no clear predisposition for direct folding into specific GQ topologies with specific syn/anti patterns. Our key prediction stemming from the T-REMD is that an ideal unfolded ensemble of the full GQ sequence populates all 4096 syn/anti combinations of its four G-stretches. The simulations can propose idealized folding pathways but we explain that such few-state pathways may be misleading. In the context of the available experimental data, the simulations strongly suggest that the GQ folding could be best understood by the kinetic partitioning mechanism with a set of deep competing minima on the folding landscape, with only a small fraction of molecules directly folding to the native fold. The landscape should further include non-specific collapse processes where the molecules move via diffusion and consecutive random rare transitions, which could, e.g. structure the propeller loops.

Zobrazit více v PubMed

Moyzis R.K., Buckingham J.M., Cram L.S., Dani M., Deaven L.L., Jones M.D., Meyne J., Ratliff R.L., Wu J.R. A Highly Conserved Repetitive DNA Sequence, (TTAGGG)n, Present at the Telomeres of Human Chromosomes. Proc. Natl. Acad. Sci. U.S.A. 1988;85:6622–6626. PubMed PMC

Wright W.E., Tesmer V.M., Huffman K.E., Levene S.D., Shay J.W. Normal Human Chromosomes Have Long G-rich Telomeric Overhangs at One End. Genes Dev. 1997;11:2801–2809. PubMed PMC

Allsopp R.C., Vaziri H., Patterson C., Goldstein S., Younglai E.V., Futcher A.B., Greider C.W., Harley C.B. Telomere Length Predicts Replicative Capacity of Human Fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 1992;89:10114–10118. PubMed PMC

Engelhardt M., Martens U.M. The Implication of Telomerase Activity and Telomere Stability for Replicative Aging and Cellular Immortality (Review) Oncol. Rep. 1998;5:1043–1052. PubMed

Aubert G., Lansdorp P.M. Telomeres and Aging. Physiol. Rev. 2008;88:557–579. PubMed

Greider C.W., Blackburn E.H. Identification of a Specific Telomere Terminal Transferase Activity in Tetrahymena Extracts. Cell. 1985;43:405–413. PubMed

Kim N., Piatyszek M., Prowse K., Harley C., West M., Ho P., Coviello G., Wright W., Weinrich S., Shay J. Specific Association of Human Telomerase Activity with Immortal Cells and Cancer. Science. 1994;266:2011–2015. PubMed

Neidle S. Human Telomeric G-quadruplex: The Current Status of Telomeric G-quadruplexes as Therapeutic Targets in Human Cancer. Febs J. 2010;277:1118–1125. PubMed

Skolakova P., Foldynova-Trantirkova S., Bednarova K., Fiala R., Vorlickova M., Trantirek L. Unique C. elegans Telomeric Overhang Structures Reveal the Evolutionarily Conserved Properties of Telomeric DNA. Nucleic Acids Res. 2015;43:4733–4745. PubMed PMC

Biffi G., Tannahill D., McCafferty J., Balasubramanian S. Quantitative Visualization of DNA G-quadruplex Structures in Human Cells. Nat. Chem. 2013;5:182–186. PubMed PMC

Lam E.Y.N., Beraldi D., Tannahill D., Balasubramanian S. G-quadruplex Structures Are Stable and Detectable in Human Genomic DNA. Nat. Commun. 2013;4:1796. PubMed PMC

Zahler A.M., Williamson J.R., Cech T.R., Prescott D.M. Inhibition of Telomerase by G-quartet DMA Structures. Nature. 1991;350:718–720. PubMed

Balasubramanian S., Neidle S. G-quadruplex Nucleic Acids as Therapeutic Targets. Curr. Opin. Chem. Biol. 2009;13:345–353. PubMed PMC

Huppert J.L., Balasubramanian S. G-quadruplexes in Promoters Throughout the Human Genome. Nucleic Acids Res. 2007;35:406–413. PubMed PMC

Qin M., Chen Z., Luo Q., Wen Y., Zhang N., Jiang H., Yang H. Two-Quartet G-Quadruplexes Formed by DNA Sequences Containing Four Contiguous GG Runs. J. Phys. Chem. B. 2015;119:3706–3713. PubMed

Huppert J.L. Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem. Soc. Rev. 2008;37:1375–1384. PubMed

Duan X.-L., Liu N.-N., Yang Y.-T., Li H.-H., Li M., Dou S.-X., Xi X.-G. G-Quadruplexes Significantly Stimulate Pif1 Helicase-catalyzed Duplex DNA Unwinding. J. Biol. Chem. 2015;290:7722–7735. PubMed PMC

Cayrou C., Coulombe P., Puy A., Rialle S., Kaplan N., Segal E., Méchali M. New Insights into Replication Origin Characteristics in Metazoans. Cell Cycle. 2012;11:658–667. PubMed PMC

Paeschke K., Bochman M.L., Garcia P.D., Cejka P., Friedman K.L., Kowalczykowski S.C., Zakian V.A. Pif1 Family Helicases Suppress Genome Instability at G-Quadruplex Motifs. Nature. 2013;497:458–462. PubMed PMC

Leontis N.B., Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA. 2001;7:499–512. PubMed PMC

da Silva M.W. Geometric Formalism for DNA Quadruplex Folding. Chem. Eur. J. 2007;13:9738–9745. PubMed

Karsisiotis A.I., O'Kane C., da Silva M.W. DNA Quadruplex Folding Formalism - A Tutorial on Quadruplex Topologies. Methods. 2013;64:28–35. PubMed

Cang X.H., Sponer J., Cheatham T.E. Explaining the Varied Glycosidic Conformational, G-Tract Length and Sequence Preferences for Anti-Parallel G-Quadruplexes. Nucleic Acids Res. 2011;39:4499–4512. PubMed PMC

Sponer J., Mladek A., Spackova N., Cang X.H., Cheatham T.E., Grimme S. Relative Stability of Different DNA Guanine Quadruplex Stem Topologies Derived Using Large-Scale Quantum-Chemical Computations. J. Am. Chem. Soc. 2013;135:9785–9796. PubMed PMC

Renciuk D., Kejnovska I., Skolakova P., Bednarova K., Motlova J., Vorlickova M. Arrangements of Human Telomere DNA Quadruplex in Physiologically Relevant K +Solutions. Nucleic Acids Res. 2009;37:6625–6634. PubMed PMC

Buscaglia R., Miller M.C., Dean W.L., Gray R.D., Lane A.N., Trent J.O., Chaires J.B. Polyethylene Glycol Binding Alters Human Telomere G-quadruplex Structure by Conformational Selection. Nucleic Acids Res. 2013;41:7934–7946. PubMed PMC

Haensel R., Loehr F., Foldynova-Trantirkova S., Bamberg E., Trantirek L., Doetsch V. The Parallel G-quadruplex Structure of Vertebrate Telomeric Repeat Sequences Is Not the Preferred Folding Topology under Physiological Conditions. Nucleic Acids Res. 2011;39:5768–5775. PubMed PMC

Haensel R., Loehr F., Trantirek L., Doetsch V. High-Resolution Insight into G-Overhang Architecture. J. Am. Chem. Soc. 2013;135:2816–2824. PubMed

Kejnovska I., Vorlickova M., Brazdova M., Sagi J. Stability of Human Telomere Quadruplexes at High DNA Concentrations. Biopolymers. 2014;101:428–438. PubMed

Lim K.W., Amrane S., Bouaziz S., Xu W., Mu Y., Patel D.J., Luu K.N., Phan A.T. Structure of the Human Telomere in K+ Solution: A Stable Basket-Type G-Quadruplex with Only Two G-Tetrad Layers. J. Am. Chem. Soc. 2009;131:4301–4309. PubMed PMC

Wang Y., Patel D.J. Solution Structure of the Human Telomeric Repeat d[AG(3)(T(2)AG(3))3] G-tetraplex. Structure. 1993;1:263–282. PubMed

Dai J., Carver M., Punchihewa C., Jones R.A., Yang D. Structure of the Hybrid-2 type Intramolecular Human Telomeric G-quadruplex in K+ Solution: Insights into Structure Polymorphism of the Human Telomeric Sequence. Nucleic Acids Res. 2007;35:4927–4940. PubMed PMC

Dai J., Punchihewa C., Ambrus A., Chen D., Jones R.A., Yang D. Structure of the Intramolecular Human Telomeric G-quadruplex in Potassium Solution: A Novel Adenine Triple Formation. Nucleic Acids Res. 2007;35:2440–2450. PubMed PMC

Parkinson G.N., Lee M.P.H., Neidle S. Crystal Structure of Parallel Quadruplexes from Human Telomeric DNA. Nature. 2002;417:876–880. PubMed

Ambrus A., Chen D., Dai J.X., Bialis T., Jones R.A., Yang D.Z. Human Telomeric Sequence Forms a Hybrid-Type Intramolecular G-Quadruplex Structure with Mixed Parallel/Antiparallel Strands in Potassium Solution. Nucleic Acids Res. 2006;34:2723–2735. PubMed PMC

Lim K.W., Ng V.C.M., Martín-Pintado N., Heddi B., Phan A.T. Structure of the Human Telomere in Na+ Solution: An Antiparallel (2 + 2) G-quadruplex Scaffold Reveals Additional Diversity. Nucleic Acids Res. 2013;41:10556–10562. PubMed PMC

Abu-Ghazalah R.M., Rutledge S., Lau L.W.Y., Dubins D.N., Macgregor R.B., Helmy A.S. Concentration-Dependent Structural Transitions of Human Telomeric DNA Sequences. Biochemistry. 2012;51:7357–7366. PubMed

Luu K.N., Phan A.T., Kuryavyi V., Lacroix L., Patel D.J. Structure of the Human Telomere in K+ Solution: An Intramolecular (3 + 1) G-quadruplex Scaffold. J. Am. Chem. Soc. 2006;128:9963–9970. PubMed PMC

Phan A.T., Kuryavyi V., Luu K.N., Patel D.J. Structure of Two Intramolecular G-quadruplexes Formed by Natural Human Telomere Sequences in K+ Solution. Nucleic Acids Res. 2007;35:6517–6525. PubMed PMC

Gray R.D., Chaires J.B. Kinetics and Mechanism of K(+)- and Na(+)-induced Folding of Models of Human Telomeric DNA into G-quadruplex Structures. Nucleic Acids Res. 2008;36:4191–4203. PubMed PMC

Zhang A.Y.Q., Balasubramanian S. The Kinetics and Folding Pathways of Intramolecular G-Quadruplex Nucleic Acids. J. Am. Chem. Soc. 2012;134:19297–19308. PubMed

Gray R.D., Trent J.O., Chaires J.B. Folding and Unfolding Pathways of the Human Telomeric G-quadruplex. J. Mol. Biol. 2014;426:1629–1650. PubMed PMC

Bessi I., Jonker H.R., Richter C., Schwalbe H. Involvement of Long-Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G-Quadruplex. Angew. Chem., Int. Ed. 2015;54:8444–8448. PubMed

You H., Zeng X., Xu Y., Lim C.J., Efremov A.K., Phan A.T., Yan J. Dynamics and Stability of Polymorphic Human Telomeric G-quadruplex under Tension. Nucleic Acids Res. 2014;42:8789–8795. PubMed PMC

Long X., Stone M.D. Kinetic Partitioning Modulates Human Telomere DNA G-Quadruplex Structural Polymorphism. PLoS One. 2013;8:e83420. PubMed PMC

Vorlickova M., Kejnovska I., Sagi J., Renciuk D., Bednarova K., Motlova J., Kypr J. Circular Dichroism and Guanine Quadruplexes. Methods. 2012;57:64–75. PubMed

Gray R.D., Li J., Chaires J.B. Energetics and Kinetics of a Conformational Switch in G-Quadruplex DNA. J. Phys. Chem. B. 2009;113:2676–2683. PubMed PMC

Palacky J., Vorlickova M., Kejnovska I., Mojzes P. Polymorphism of Human Telomeric Quadruplex Structure Controlled by DNA Concentration: A Raman Study. Nucleic Acids Res. 2013;41:1005–1016. PubMed PMC

Wang Z.-F., Li M.-H., Hsu S.-T.D., Chang T.-C. Structural Basis of Sodium–Potassium Exchange of a Human Telomeric DNA Quadruplex Without Topological Conversion. Nucleic Acids Res. 2014;42:4723–4733. PubMed PMC

Lee J.Y., Okumus B., Kim D.S., Ha T. Extreme Conformational Diversity in Human Telomeric DNA. Proc. Natl. Acad. Sci. U.S.A. 2005;102:18938–18943. PubMed PMC

Thirumalai D., O'Brien E.P., Morrison G., Hyeon C. Theoretical Perspectives on Protein Folding. Annu. Rev. Biophys. 2010;39:159–183. PubMed

Narayanan R., Zhu L., Velmurugu Y., Roca J., Kuznetsov S.V., Prehna G., Lapidus L.J., Ansari A. Exploring the Energy Landscape of Nucleic Acid Hairpins Using Laser Temperature-Jump and Microfluidic Mixing. J. Am. Chem. Soc. 2012;134:18952–18963. PubMed

Li H., Cao E.H., Gisler T. Force-induced Unfolding of Human Telomeric G-quadruplex: A Steered Molecular Dynamics Simulation Study. Biochem. Biophys. Res. Commun. 2009;379:70–75. PubMed

Bian Y., Tan C., Wang J., Sheng Y., Zhang J., Wang W. Atomistic Picture for the Folding Pathway of a Hybrid-1 Type Human Telomeric DNA G-quadruplex. PLoS Comput. Biol. 2014;10:e1003562. PubMed PMC

Koirala D., Mashimo T., Sannohe Y., Yu Z.B., Mao H.B., Sugiyama H. Intramolecular Folding in Three Tandem Guanine Repeats of Human Telomeric DNA. Chem. Commun. 2012;48:2006–2008. PubMed

Mashimo T., Yagi H., Sannohe Y., Rajendran A., Sugiyama H. Folding Pathways of Human Telomeric Type-1 and Type-2 G-quadruplex Structures. J. Am. Chem. Soc. 2010;132:14910–14918. PubMed

Limongelli V., De Tito S., Cerofolini L., Fragai M., Pagano B., Trotta R., Cosconati S., Marinelli L., Novellino E., Bertini I., et al. The G-Triplex DNA. Angew. Chem., Int. Ed. 2013;52:2269–2273. PubMed

Stefl R., Cheatham T.E., Spackova N., Fadrna E., Berger I., Koca J., Sponer J. Formation Pathways of a Guanine-Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates. Biophys. J. 2003;85:1787–1804. PubMed PMC

Yang C., Jang S., Pak Y. Multiple Stepwise Pattern for Potential of Mean Force in Unfolding the Thrombin Binding Aptamer in Complex with Sr2+ J. Chem. Phys. 2011;135:225104. PubMed

Stadlbauer P., Krepl M., Cheatham T.E., Koca J., Sponer J. Structural Dynamics of Possible Late-Stage Intermediates in Folding of Quadruplex DNA Studied by Molecular Simulations. Nucleic Acids Res. 2013;41:7128–7143. PubMed PMC

Stadlbauer P., Trantirek L., Cheatham T.E., Koca J., Sponer J. Triplex Intermediates in Folding of Human Telomeric Quadruplexes Probed by Microsecond-scale Molecular Dynamics Simulations. Biochimie. 2014;105:22–35. PubMed

Kim E., Yang C., Pak Y. Free-energy Landscape of a Thrombin-binding DNA Aptamer in Aqueous Environment. J. Chem. Theory Comput. 2012;8:4845–4851. PubMed

Sponer J., Banas P., Jurecka P., Zgarbova M., Kuehrova P., Havrila M., Krepl M., Stadlbauer P., Otyepka M. Molecular Dynamics Simulations of Nucleic Acids. From Tetranucleotides to the Ribosome. J. Phys. Chem. Lett. 2014;5:1771–1782. PubMed

Islam B., Sgobba M., Laughton C., Orozco M., Sponer J., Neidle S., Haider S. Conformational Dynamics of the Human Propeller Telomeric DNA Quadruplex on a Microsecond Time Scale. Nucleic Acids Res. 2013;41:2723–2735. PubMed PMC

Wei D., Husby J., Neidle S. Flexibility and Structural Conservation in a c-KIT G-quadruplex. Nucleic Acids Res. 2015;43:629–644. PubMed PMC

Reshetnikov R., Golovin A., Spiridonova V., Kopylov A., Sponer J. Structural Dynamics of Thrombin-Binding DNA Aptamer d(GGTTGGTGTGGTTGG) Quadruplex DNA Studied by Large-scale Explicit Solvent Simulations. J. Chem. Theory Comput. 2010;6:3003–3014. PubMed

Ghosh S., Jana J., Kar R.K., Chatterjee S., Dasgupta D. Plant Alkaloid Chelerythrine Induced Aggregation of Human Telomere Sequence-A Unique Mode of Association between a Small Molecule and a Quadruplex. Biochemistry. 2015;54:974–986. PubMed

Abrams C., Bussi G. Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration. Entropy. 2013;16:163–199.

Iacovelli F., Falconi M. Decoding the Conformation-linked Functional Properties of Nucleic Acids by the Use of Computational Tools. Febs J. 2015;282:3298–3310. PubMed

Lindorff-Larsen K., Piana S., Dror R.O., Shaw D.E. How Fast-Folding Proteins Fold. Science. 2011;334:517–520. PubMed

Best R.B., Hummer G., Eaton W.A. Native Contacts Determine Protein Folding Mechanisms in Atomistic Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013;110:17874–17879. PubMed PMC

Li Y., Liu C., Feng X., Xu Y., Liu B.-F. Ultrafast Microfluidic Mixer for Tracking the Early Folding Kinetics of Human Telomere G-Quadruplex. Anal. Chem. 2014;86:4333–4339. PubMed

Rajendran A., Endo M., Hidaka K., Sugiyama H. Direct and Single-Molecule Visualization of the Solution-State Structures of G-Hairpin and G-Triplex Intermediates. Angew. Chem. 2014;126:4191–4196. PubMed

Rajendran A., Endo M., Hidaka K., Teulade-Fichou M.-P., Mergny J.-L., Sugiyama H. Small Molecule Binding to a G-hairpin and a G-triplex: A New Insight into Anticancer Drug Design Targeting G-rich Regions. Chem. Commun. 2015;51:9181–9184. PubMed

Sugita Y., Okamoto Y. Replica-Exchange Molecular Dynamics Method for Protein Folding. Chem. Phys. Lett. 1999;314:141–151.

Dai J., Chen D., Jones R.A., Hurley L.H., Yang D. NMR Solution Structure of the Major G-quadruplex Structure Formed in the Human BCL2 Promoter Region. Nucleic Acids Res. 2006;34:5133–5144. PubMed PMC

Case D.A.D., Cheatham T.T.E., III, Simmerling C.L., Wang J.D., R.E.R.E. Luo R., Walker R., Zhang W., Merz K.M.R., Hayik S.S., Roitberg A., et al. AMBER 12. San Francisco: University of California; 2012.

Islam B., Stadlbauer P., Krepl M., Koca J., Neidle S., Haider S., Sponer J. Extended Molecular Dynamics of a c-kit Promoter Quadruplex. Nucleic Acids Res. 2015 doi:10.1093/nar/gkv785. PubMed PMC

Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935.

Berendsen H.J.C., Grigera J.R., Straatsma T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987;91:6269–6271.

Florova P., Sklenovsky P., Banas P., Otyepka M. Explicit Water Models Affect the Specific Solvation and Dynamics of Unfolded Peptides While the Conformational Behavior and Flexibility of Folded Peptides Remain Intact. J. Chem. Theory Comput. 2010;6:3569–3579. PubMed

Joung I.S., Cheatham T.E. Determination of Alkali and Halide Monovalent Ion Parameters for Use In Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B. 2008;112:9020–9041. PubMed PMC

Aqvist J. Ion Water Interaction Potentials Derived from Free-Energy Perturbation Simulations. J. Phys. Chem. 1990;94:8021–8024.

Smith D.E., Dang L.X. Computer Simulations of NaCl Association in Polarizable Water. J. Chem. Phys. 1994;100:3757–3766.

Dang L.X., Kollman P.A. Free Energy of Association of the K + 18-crown-6 complex in Water - A New Molecular Dynamics Study. J. Phys. Chem. 1995;99:55–58.

Noy A., Soteras I., Luque F.J., Orozco M. The Impact of Monovalent Ion Force Field Model in Nucleic Acids Simulations. Phys. Chem. Chem. Phys. 2009;11:10596–10607. PubMed

Sponer J., Cang X.H., Cheatham T.E. Molecular Dynamics Simulations of G-DNA and Perspectives on the Simulation of Nucleic Acid Structures. Methods. 2012;57:25–39. PubMed PMC

Perez A., Marchan I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M. Refinenement of the AMBER Force Field for Nucleic Acids: Improving the Description of Alpha/Gamma Conformers. Biophys. J. 2007;92:3817–3829. PubMed PMC

Krepl M., Zgarbova M., Stadlbauer P., Otyepka M., Banas P., Koca J., Cheatham T.E., Jurecka P., Sponer J. Reference Simulations of Noncanonical Nucleic Acids with Different Chi Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012;8:2506–2520. PubMed PMC

Zgarbova M., Luque F.J., Sponer J., Cheatham T.E., Otyepka M., Jurecka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013;9:2339–2354. PubMed PMC

Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995;117:5179–5197.

Cieplak P., Cornell W.D., Bayly C., Kollman P.A. Application of the Multimolecule and Multiconformational RESP Methodology to Biopolymers - Charge Derivation for DNA, RNA, and Proteins. J. Comput. Chem. 1995;16:1357–1377.

Wang J.M., Cieplak P., Kollman P.A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules. J. Comput. Chem. 2000;21:1049–1074.

Darden T., York D., Pedersen L. Particle Mesh Ewald - An N.log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993;98:10089–10092.

Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995;103:8577–8593.

Berendsen H.J.C., Postma J.P.M., Vangunsteren W.F., Dinola A., Haak J.R. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984;81:3684–3690.

Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical Integration of Cartesian Equations of Motion of a System with Constraints - Molecular Dynamics of N-alkans. J. Comput. Phys. 1977;23:327–341.

Dang L.X. Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study. J. Am. Chem. Soc. 1995;117:6954–6960.

Rosta E., Buchete N.-V., Hummer G. Thermostat Artifacts in Replica Exchange Molecular Dynamics Simulations. J. Chem. Theory Comput. 2009;5:1393–1399. PubMed PMC

Fadrna E., Spackova N., Sarzynska J., Koca J., Orozco M., Cheatham T.E., Kulinski T., Sponer J. Single Stranded Loops of Quadruplex DNA as Key Benchmark for Testing Nucleic Acids Force Fields. J. Chem. Theory Comput. 2009;5:2514–2530. PubMed

Rachwal P.A., Brown T., Fox K.R. Sequence Effects of Single Base Loops in Intramolecular Quadruplex DNA. Febs Lett. 2007;581:1657–1660. PubMed

Smargiasso N., Rosu F., Hsia W., Colson P., Baker E.S., Bowers M.T., De Pauw E., Gabelica V. G-quadruplex DNA Assemblies: Loop Length, Cation Identity, and Multimer Formation. J. Am. Chem. Soc. 2008;130:10208–10216. PubMed

Rachwal P.A., Brown T., Fox K.R. Effect of G-tract Length on the Topology and Stability of Intramolecular DNA Quadruplexes. Biochemistry. 2007;46:3036–3044. PubMed

Rachwal P.A., Findlow I.S., Werner J.M., Brown T., Fox K.R. Intramolecular DNA Quadruplexes with Different Arrangements of Short and Long Loops. Nucleic Acids Res. 2007;35:4214–4222. PubMed PMC

Bugaut A., Balasubramanian S. A Sequence-Independent Study of the Influence of Short Loop Lengths on the Stability and Topology of Intramolecular DNA G-quadruplexes. Biochemistry. 2008;47:689–697. PubMed PMC

Mladek A., Krepl M., Svozil D., Cech P., Otyepka M., Banas P., Zgarbova M., Jurecka P., Sponer J. Benchmark Quantum-chemical Calculations on a Complete Set of Rotameric Families of the DNA Sugar-phosphate Backbone and Their Comparison with Modern Density Functional Theory. Phys. Chem. Chem. Phys. 2013;15:7295–7310. PubMed

Zgarbova M., Otyepka M., Sponer J., Lankas F., Jurecka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014;10:3177–3189. PubMed

Best R.B., Hummer G. Reaction Coordinates and Rates from Transition Paths. Proc. Natl. Acad. Sci. U.S.A. 2005;102:6732–6737. PubMed PMC

Portella G., Orozco M. Multiple Routes to Characterize the Folding of a Small DNA Hairpin. Angew. Chem., Int. Ed. 2010;49:7673–7676. PubMed

Kannan S., Zacharias M. Folding of a DNA Hairpin Loop Structure in Explicit Solvent Using Replica-Exchange Molecular Dynamics Simulations. Biophys. J. 2007;93:3218–3228. PubMed PMC

Kuehrova P., Banas P., Best R.B., Sponer J., Otyepka M. Computer Folding of RNA Tetraloops? Are We There Yet. J. Chem. Theory Comput. 2013;9:2115–2125. PubMed

Chen A.A., Garcia A.E. High-Resolution Reversible Folding of Hyperstable RNA Tetraloops Using Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U.S.A. 2013;110:16820–16825. PubMed PMC

Bergonzo C., Henriksen N.M., Roe D.R., Swails J.M., Roitberg A.E., Cheatham T.E. Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide. J. Chem. Theory Comput. 2013;10:492–499. PubMed PMC

Bergonzo C., Henriksen N.M., Roe D.R., Cheatham T.E. Highly Sampled Tetranucleotide and Tetraloop Motifs Enable Evaluation of Common RNA Force Fields. RNA. 2015;21:1578–1590. PubMed PMC

Ceru S., Sket P., Prislan I., Lah J., Plavec J. A New Pathway of DNA G-Quadruplex Formation. Angew. Chem., Int. Ed. 2014;53:4881–4884. PubMed

Li W., Hou X.-M., Wang P.-Y., Xi X.-G., Li M. Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G-quadruplex Structures. J. Am. Chem. Soc. 2013;135:6423–6426. PubMed

Gray R.D., Buscaglia R., Chaires J.B. Populated Intermediates in the Thermal Unfolding of the Human Telomeric Quadruplex. J. Am. Chem. Soc. 2012;134:16834–16844. PubMed PMC

Marchand A., Ferreira R., Tateishi-Karimata H., Miyoshi D., Sugimoto N., Gabelica V. Sequence and Solvent Effects on Telomeric DNA Bimolecular G-Quadruplex Folding Kinetics. J. Phys. Chem. B. 2013;117:12391–12401. PubMed

Thirumalai D., Woodson S.A. Kinetics of Folding of Proteins and RNA. Acc. Chem. Res. 1996;29:433–439.

Mukundan V.T., Phan A.T. Bulges in G-Quadruplexes: Broadening the Definition of G-Quadruplex-Forming Sequences. J. Am. Chem. Soc. 2013;135:5017–5028. PubMed

Ansari A., Kuznetsov S.V., Shen Y. Configurational Diffusion Down a Folding Funnel Describes the Dynamics of DNA Hairpins. Proc. Natl. Acad. Sci. U.S.A. 2001;98:7771–7776. PubMed PMC

Jung J., Van Orden A. A Three-State Mechanism for DNA Hairpin Folding Characterized by Multiparameter Fluorescence Fluctuation Spectroscopy. J. Am. Chem. Soc. 2006;128:1240–1249. PubMed

Boncina M., Lah J., Prislan I., Vesnaver G. Energetic Basis of Human Telomeric DNA Folding into G-quadruplex Structures. J. Am. Chem. Soc. 2012;134:9657–9663. PubMed

Cragnolini T., Derreumaux P., Pasquali S. Coarse-Grained Simulations of RNA and DNA Duplexes. J. Phys. Chem. B. 2013;117:8047–8060. PubMed

Chakraborty D., Collepardo-Guevara R., Wales D.J. Energy Landscapes, Folding Mechanisms, and Kinetics of RNA Tetraloop Hairpins. J. Am. Chem. Soc. 2014;136:18052–18061. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...