Computer Folding of Parallel DNA G-Quadruplex: Hitchhiker's Guide to the Conformational Space
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
101092944
HORIZON EUROPE Framework Programme
CA21101
European Cooperation in Science and Technology
90254
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.01.01/00/22_008/0004587
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/15_003/0000477
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39653644
PubMed Central
PMC11628365
DOI
10.1002/jcc.27535
Knihovny.cz E-zdroje
- Klíčová slova
- DNA quadruplex, computational folding, enhanced sampling, kinetic partitioning mechanism, metadynamics, molecular dynamics, nudged elastic band, pathCV, transition path sampling,
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- simulace molekulární dynamiky MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
Guanine quadruplexes (GQs) play crucial roles in various biological processes, and understanding their folding pathways provides insight into their stability, dynamics, and functions. This knowledge aids in designing therapeutic strategies, as GQs are potential targets for anticancer drugs and other therapeutics. Although experimental and theoretical techniques have provided valuable insights into different stages of the GQ folding, the structural complexity of GQs poses significant challenges, and our understanding remains incomplete. This study introduces a novel computational protocol for folding an entire GQ from single-strand conformation to its native state. By combining two complementary enhanced sampling techniques, we were able to model folding pathways, encompassing a diverse range of intermediates. Although our investigation of the GQ free energy surface (FES) is focused solely on the folding of the all-anti parallel GQ topology, this protocol has the potential to be adapted for the folding of systems with more complex folding landscapes.
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
IT4Innovations VŠB Technical University of Ostrava Ostrava Czech Republic
Scuola Internazionale Superiore di Studi Avanzati SISSA Trieste Italy
Zobrazit více v PubMed
Sen D. and Gilbert W., “Formation of Parallel Four‐Stranded Complexes by Guanine‐Rich Motifs in DNA and Its Implications for Meiosis,” Nature 334 (1988): 364–366. PubMed
Ren J., Wang J., Han L., Wang E., and Wang J., “Kinetically Grafting G‐Quadruplexes Onto DNA Nanostructures for Structure and Function Encoding via a DNA Machine,” Chemical Communication 47 (2011): 10563–10565. PubMed
Burge S., Parkinson G. N., Hazel P., Todd A. K., and Neidle S., “Quadruplex DNA: Sequence, Topology and Structure,” Nucleic Acids Research 34 (2006): 5402–5415. PubMed PMC
Phan A. T., “Human Telomeric G‐Quadruplex: Structures of DNA and RNA Sequences,” FEBS Journal 277 (2010): 1107–1117. PubMed
Karsisiotis A. I., O'Kane C., and Webba da Silva M., “DNA Quadruplex Folding Formalism—A Tutorial on Quadruplex Topologies,” Methods 64 (2013): 28–35. PubMed
Bosch P. C., Segura‐Bayona S., Koole W., et al., “FANCJ Promotes DNA Synthesis Through G‐Quadruplex Structures,” EMBO Journal 33 (2014): 2521–2533. PubMed PMC
Valton A. L., Hassan‐Zadeh V., Lema I., et al., “G4 Motifs Affect Origin Positioning and Efficiency in Two Vertebrate Replicators,” EMBO Journal 33 (2014): 732–746. PubMed PMC
Besnard E., Babied A., Lapasset L., et al., “Unraveling Cell Type‐Specific and Reprogrammable Human Replication Origin Signatures Associated With G‐Quadruplex Consensus Motifs,” Nature Structural & Molecular Biology 19 (2012): 837–844. PubMed
David A. P., Margarit E., Domizi P., Banchio C., Armas P., and Calcaterra N. B., “G‐Quadruplexes as Novel Cis‐Elements Controlling Transcription During Embryonic Development,” Nucleic Acids Research 44 (2016): 4163–4173. PubMed PMC
Fernando H., Sewitz S., Darot J., Tavaré S., Huppert J. L., and Balasubramanian S., “Genome‐Wide Analysis of a G‐Quadruplex‐Specific Single‐Chain Antibody That Regulates Gene Expression,” Nucleic Acids Research 37 (2009): 6716–6722. PubMed PMC
Hänsel‐Hertsch R., Beraldi D., Lensing S. V., et al., “G‐Quadruplex Structures Mark Human Regulatory Chromatin,” Nature Genetics 48 (2016): 1267–1272. PubMed
Sarkies P., Reams C., Simpson L. J., and Sale J. E., “Epigenetic Instability due to Defective Replication of Structured DNA,” Molecular Cell 40 (2010): 703–713. PubMed PMC
Lopez C. R., Singh S., Hambarde S., et al., “Yeast Sub1 and Human PC4 Are G‐Quadruplex Binding Proteins That Suppress Genome Instability at Co‐Transcriptionally Formed G4 DNA,” Nucleic Acids Research 45 (2017): 5850–5862. PubMed PMC
Rodriguez R., Miller K. M., Forment J. V., et al., “Small‐Molecule‐Induced DNA Damage Identifies Alternative DNA Structures in Human Genes,” Nature Chemical Biology 8 (2012): 301–310. PubMed PMC
Lemmens B., van Schendel R., and Tijsterman M., “Mutagenic Consequences of a Single G‐Quadruplex Demonstrate Mitotic Inheritance of DNA Replication Fork Barriers,” Nature Communications 6 (2015): 6. PubMed PMC
Paeschke K., Juranek S., Simonsson T., Hempel A., Rhodes D., and Lipps H. J., “Telomerase Recruitment by the Telomere End Binding Protein‐β Facilitates G‐Quadruplex DNA Unfolding in Ciliates,” Nature Structural & Molecular Biology 15 (2008): 598–604. PubMed
Paeschke K., Simonsson T., Postberg J., Rhodes D., and Lipps H. J., “Telomere End‐Binding Proteins Control the Formation of G‐Quadruplex DNA Structures,” Nature Structural & Molecular Biology 12 (2005): 847–854. PubMed
Lejault P., Mitteaux J., Sperti F. R., and Monchaud D., “How to Untie G‐Quadruplex Knots and Why?,” Cell Chemical Biology 28 (2021): 436–455. PubMed
Artese A., Costa G., Distinto S., et al., “Toward the Design of New DNA G‐Quadruplex Ligands Through Rational Analysis of Polymorphism and Binding Data,” European Journal of Medicinal Chemistry 68 (2013): 139–149. PubMed
Alcaro S., Musett C., Distinto S., et al., “Identification and Characterization of New DNA G‐Quadruplex Binders Selected by a Combination of Ligand and Structure‐Based Virtual Screening Approaches,” Journal of Medicinal Chemistry 56 (2013): 843–855. PubMed
Rocca R., Moraca F., Costa G., et al., “Identification of G‐Quadruplex DNA/RNA Binders: Structure‐Based Virtual Screening and Biophysical Characterization,” Biochimica et Biophysica Acta‐General Subjects 1861 (2017): 1329–1340. PubMed
Métifiot M., Amrane S., Litvak S., and Andreola M. L., “G‐Quadruplexes in Viruses: Function and Potential Therapeutic Applications,” Nucleic Acids Research 42 (2014): 12352–12366. PubMed PMC
Ruggiero E. and Richter S. N., “G‐Quadruplexes and G‐Quadruplex Ligands: Targets and Tools in Antiviral Therapy,” Nucleic Acids Research 46 (2018): 3270–3283. PubMed PMC
Mergny J. L. and Sen D., “DNA Quadruple Helices in Nanotechnology,” Chemical Reviews 119 (2019): 6290–6325. PubMed
Stefan L. and Monchaud D., “Applications of Guanine Quartets in Nanotechnology and Chemical Biology,” Nature Reviews Chemistry 3 (2019): 650–668.
Leontis N. B. and Westhof E., “Geometric Nomenclature and Classification of RNA Base Pairs,” RNA 7 (2001): 499–512. PubMed PMC
Winnerdy F. R. P. A. T., “Chapter Two—Quadruplex Structure and Diversity,” Annual Reports in Medicinal Chemistry 54 (2020): 45–73.
Sen D. and Gilbert W., “A Sodium‐Potassium Switch in the Formation of Four‐Stranded G4‐DNA,” Nature 344 (1990): 410–414. PubMed
Rocca R., Palazzesi F., Amato J., et al., “Folding Intermediate States of the Parallel Human Telomeric G‐Quadruplex DNA Explored Using Well‐Tempered Metadynamics,” Scientific Reports 10 (2020): 3176. PubMed PMC
Gray R. D., Trent J. O., and Chaires J. B., “Folding and Unfolding Pathways of the Human Telomeric G‐Quadruplex,” Journal of Molecular Biology 426 (2014): 1629–1650. PubMed PMC
Bessi I., Jonker H. R., Richter C., and Schwalbe H., “Involvement of Long‐Lived Intermediate States in the Complex Folding Pathway of the Human Telomeric G‐Quadruplex,” Angewandte Chemie 54 (2015): 8444–8448. PubMed
You H., Zeng X., Xu Y., et al., “Dynamics and Stability of Polymorphic Human Telomeric G‐Quadruplex Under Tension,” Nucleic Acids Research 42 (2014): 8789–8795. PubMed PMC
Long X. and Stone M. D., “Kinetic Partitioning Modulates Human Telomere DNA G‐Quadruplex Structural Polymorphism,” PLoS One 8 (2013): e83420. PubMed PMC
Lane A. N., Chaires J. B., Gray R. D., and Trent J. O., “Stability and Kinetics of G‐Quadruplex Structures,” Nucleic Acids Research 36 (2008): 5482–5515. PubMed PMC
Mergny J. L., De Cian A., Ghelab A., Sacca B., and Lacroix L., “Kinetics of Tetramolecular Quadruplexes,” Nucleic Acids Research 33 (2005): 81–94. PubMed PMC
Grun J. T. and Schwalbe H., “Folding Dynamics of Polymorphic G‐Quadruplex Structures,” Biopolymers 113 (2022): e23477. PubMed
Sponer J., Bussi G., Stadlbauer P., et al., “Folding of Guanine Quadruplex Molecules‐Funnel‐Like Mechanism or Kinetic Partitioning? An Overview From MD Simulation Studies,” Biochimica et Biophysica Acta‐General Subjects 1861 (2017): 1246–1263. PubMed
Thirumalai D., Klimov D. K., and Woodson S. A., “Kinetic Partitioning Mechanism as a Unifying Theme in the Folding of Biomolecules,” Theoretical Chemistry Accounts 96 (1997): 14–22.
Bardin C. and Leroy J. L., “The Formation Pathway of Tetramolecular G‐Quadruplexes,” Nucleic Acids Research 36 (2008): 477–488. PubMed PMC
Cerofolini L., Amato J., Giachetti A., et al., “G‐Triplex Structure and Formation Propensity,” Nucleic Acids Research 42 (2014): 13393–13404. PubMed PMC
Koirala D., Mashimo T., Sannohe Y., Yu Z., Mao H., and Sugiyama H., “Intramolecular Folding in Three Tandem Guanine Repeats of Human Telomeric DNA,” Chemical Communication 48 (2012): 2006–2008. PubMed
Li W., Hou X. M., Wang P. Y., Xi X. G., and Li M., “Direct Measurement of Sequential Folding Pathway and Energy Landscape of Human Telomeric G‐Quadruplex Structures,” Journal of the American Chemical Society 135 (2013): 6423–6426. PubMed
Luo D. and Mu Y., “Computational Insights Into the Stability and Folding Pathways of Human Telomeric DNA G‐Quadruplexes,” Journal of Physical Chemistry B 120 (2016): 4912–4926. PubMed
Mashimo T., Yagi H., Sannohe Y., Rajendran A., and Sugiyama H., “Folding Pathways of Human Telomeric Type‐1 and Type‐2 G‐Quadruplex Structures,” Journal of the American Chemical Society 132 (2010): 14910–14918. PubMed
Pokorná P., Mlynsky V., Bussi G., Sponer J., and Stadlbauer P., “Molecular Dynamics Simulations Reveal the Parallel Stranded d (GGGA)3GGG DNA Quadruplex Folds via Multiple Paths From a Coil‐Like Ensemble,” International Journal of Biological Macromolecules 261 (2024): 129712. PubMed
Stefl R., Cheatham T. E., Spackova N., et al., “Formation Pathways of a Guanine‐Quadruplex DNA Revealed by Molecular Dynamics and Thermodynamic Analysis of the Substates,” Biophysical Journal 85 (2003): 1787–1804. PubMed PMC
Muller D., Bessi I., Richter C., and Schwalbe H., “The Folding Landscapes of Human Telomeric RNA and DNA G‐Quadruplexes Are Markedly Different,” Angewandte Chemie 60 (2021): 10895–10901. PubMed PMC
Lee J. Y., Okumus B., Kim D. S., and Ha T., “Extreme Conformational Diversity in Human Telomeric DNA,” Proceedings of the National Academy of Sciences of the United States of America 102 (2005): 18938–18943. PubMed PMC
Okamoto K., Sannohe Y., Mashimo T., Sugiyama H., and Terazima M., “G‐Quadruplex Structures of Human Telomere DNA Examined by Single Molecule FRET and BrG‐Substitution,” Bioorganic & Medicinal Chemistry 16 (2008): 6873–6879. PubMed
Noer S. L., Preus S., Gudnason D., Aznauryan M., Mergny J. L., and Birkedal V., “Folding Dynamics and Conformational Heterogeneity of Human Telomeric G‐Quadruplex Structures in Na + Solutions by Single Molecule FRET Microscopy,” Nucleic Acids Research 44 (2016): 464–471. PubMed PMC
Hou X. M., Fu Y. B., Wu W. Q., et al., “Involvement of G‐Triplex and G‐Hairpin in the Multi‐Pathway Folding of Human Telomeric G‐Quadruplex,” Nucleic Acids Research 45 (2017): 11401–11412. PubMed PMC
Aznauryan M., Sondergaard S., Noer S. L., Schiott B., and Birkedal V., “A Direct View of the Complex Multi‐Pathway Folding of Telomeric G‐Quadruplexes,” Nucleic Acids Research 44 (2016): 11024–11032. PubMed PMC
Marchand A. and Gabelica V., “Folding and Misfolding Pathways of G‐Quadruplex DNA,” Nucleic Acids Research 44 (2016): 10999–11012. PubMed PMC
Stadlbauer P., Trantirek L., Cheatham T. E., Koca J., and Sponer J., “Triplex Intermediates in Folding of Human Telomeric Quadruplexes Probed by Microsecond‐Scale Molecular Dynamics Simulations,” Biochimie 105 (2014): 22–35. PubMed
Stadlbauer P., Kuhrova P., Banas P., et al., “Hairpins Participating in Folding of Human Telomeric Sequence Quadruplexes Studied by Standard and T‐REMD Simulations,” Nucleic Acids Research 43 (2015): 9626–9644. PubMed PMC
Havrila M., Stadlbauer P., Kuhrova P., et al., “Structural Dynamics of Propeller Loop: Towards Folding of RNA G‐Quadruplex,” Nucleic Acids Research 46 (2018): 8754–8771. PubMed PMC
Stadlbauer P., Kührová P., Vicherek L., et al., “Parallel G‐Triplexes and G‐Hairpins as Potential Transitory Ensembles in the Folding of Parallel‐Stranded DNA G‐Quadruplexes,” Nucleic Acids Research 47 (2019): 7276–7293. PubMed PMC
Stadlbauer P., Islam B., Otyepka M., et al., “Insights Into G‐Quadruplex‐Hemin Dynamics Using Atomistic Simulations: Implications for Reactivity and Folding,” Journal of Chemical Theory and Computation 17 (2021): 1883–1899. PubMed
Yang C., Jang S., and Pak Y., “Multiple Stepwise Pattern for Potential of Mean Force in Unfolding the Thrombin Binding Aptamer in Complex With Sr2+,” Journal of Chemical Physics 135 (2011): 225104. PubMed
Sun L., Jin H., Zhao X., et al., “Unfolding and Conformational Variations of Thrombin‐Binding DNA Aptamers: Synthesis, Circular Dichroism and Molecular Dynamics Simulations,” ChemMedChem 9 (2014): 993–1001. PubMed
Li H., Cao E. H., and Gisler T., “Force‐Induced Unfolding of Human Telomeric G‐Quadruplex: A Steered Molecular Dynamics Simulation Study,” Biochemical and Biophysical Research Communications 379 (2009): 70–75. PubMed
Bergues‐Pupo A. E., Arias‐Gonzalez J. R., Moron M. C., Fiasconaro A., and Falo F., “Role of the Central Cations in the Mechanical Unfolding of DNA and RNA G‐Quadruplexes,” Nucleic Acids Research 43 (2015): 7638–7647. PubMed PMC
Ray A., Panigrahi S., and Bhattacharyya D., “A Comparison of Four Different Conformations Adopted by Human Telomeric G‐Quadruplex Using Computer Simulations,” Biopolymers 105 (2016): 83–99. PubMed
Bergues‐Pupo A. E., Gutierrez I., Arias‐Gonzalez J. R., Falo F., and Fiasconaro A., “Mesoscopic model for DNA G‐quadruplex unfolding,” Scientific Reports 7 (2017): 11756. PubMed PMC
Stadlbauer P., Mlynsky V., Krepl M., and Sponer J., “Complexity of Guanine Quadruplex Unfolding Pathways Revealed by Atomistic Pulling Simulations,” Journal of Chemical Information and Modeling 63 (2023): 4716–4731. PubMed PMC
Stadlbauer P., Krepl M., Cheatham T. E., Koca J., and Sponer J., “Structural Dynamics of Possible Late‐Stage Intermediates in Folding of Quadruplex DNA Studied by Molecular Simulations,” Nucleic Acids Research 41 (2013): 7128–7143. PubMed PMC
Kim E., Yang C., and Pak Y., “Free‐Energy Landscape of a Thrombin‐Binding DNA Aptamer in Aqueous Environment,” Journal of Chemical Theory and Computation 8 (2012): 4845–4851. PubMed
Zeng X., Zhang L., Xiao X., et al., “Unfolding Mechanism of Thrombin‐Binding Aptamer Revealed by Molecular Dynamics Simulation and Markov State Model,” Scientific Reports 6 (2016): 24065. PubMed PMC
Bian Y., Song F., Cao Z., et al., “Fast‐Folding Pathways of the Thrombin‐Binding Aptamer G‐Quadruplex Revealed by a Markov State Model,” Biophysical Journal 114 (2018): 1529–1538. PubMed PMC
Carrino S., Hennecker C. D., Murrieta A. C., and Mittermaier A., “Frustrated Folding of Guanine Quadruplexes in Telomeric DNA,” Nucleic Acids Research 49 (2021): 3063–3076. PubMed PMC
Stadlbauer P., Mazzanti L., Cragnolini T., et al., “Coarse‐Grained Simulations Complemented by Atomistic Molecular Dynamics Provide New Insights Into Folding and Unfolding of Human Telomeric G‐Quadruplexes,” Journal of Chemical Theory and Computation 12 (2016): 6077–6097. PubMed
Bian Y., Ren W., Song F., Yu J., and Wang J., “Exploration of the Folding Dynamics of Human Telomeric G‐Quadruplex With a Hybrid Atomistic Structure‐Based Model,” Journal of Chemical Physics 148 (2018): 204107. PubMed
Bian Y. Q., Song F., Cao Z. X., Yu J. F., and Wang J. H., “Structure‐Based Simulations Complemented by Conventional All‐Atom Simulations to Provide New Insights Into the Folding Dynamics of Human Telomeric G‐Quadruplex*,” Chinese Physics B 30 (2021): 078702‐1–078702‐9.
Ugrina M., Burkhart I., Muller D., Schwalbe H., and Schwierz N., “RNA G‐Quadruplex Folding Is a Multi‐Pathway Process Driven by Conformational Entropy,” Nucleic Acids Research 52 (2024): 87–100. PubMed PMC
Yang C., Kulkarni M., Lim M., and Pak Y., “Insilico Direct Folding of Thrombin‐Binding Aptamer G‐Quadruplex at All‐Atom Level,” Nucleic Acids Research 45 (2017): 12648–12656. PubMed PMC
Kim H., Kim E., and Pak Y., “Computational Probing of the Folding Mechanism of Human Telomeric G‐Quadruplex DNA,” Journal of Chemical Information and Modeling 63 (2023): 6366–6375. PubMed
Bergonzo C., Campbell A. J., Walker R. C., and Simmerling C., “A Partial Nudged Elastic Band Implementation for Use With Large or Explicitly Solvated Systems,” International Journal of Quantum Chemistry 109 (2009): 3781–3790. PubMed PMC
Barducci A., Bussi G., and Parrinello M., “Well‐Tempered Metadynamics: A Smoothly Converging and Tunable Free‐Energy Method,” Physical Review Letters 100 (2008): 020603. PubMed
Wang L., Friesner R. A., and Berne B. J., “Replica Exchange With Solute Scaling: A More Efficient Version of Replica Exchange With Solute Tempering (REST2),” Journal of Physical Chemistry B 115 (2011): 9431–9438. PubMed PMC
Rachwal P. A., Brown T., and Fox K. R., “Sequence Effects of Single Base Loops in Intramolecular Quadruplex DNA,” FEBS Letters 581 (2007): 1657–1660. PubMed
Bugaut A. and Balasubramanian S., “A Sequence‐Independent Study of the Influence of Short Loop Lengths on the Stability and Topology of Intramolecular DNA G‐Quadruplexes,” Biochemistry‐Us 47 (2008): 689–697. PubMed PMC
Chen J. L., Cheng M. P., Stadlbauer P., et al., “Exploring Sequence Space to Design Controllable G‐Quadruplex Topology Switches,” CCS Chemistry 4 (2022): 3036–3050.
Case D. A. B.‐S., Brozell S. R., Cerutti D. S., et al., “AMBER 2018,” 2018.University of Carolina: San Francisco.
Berendsen H. J. C., Postma J. P. M., Vangunsteren W. F., Dinola A., and Haak J. R., “Molecular‐Dynamics With Coupling to an External Bath,” Journal of Chemical Physics 81 (1984): 3684–3690.
Dang L. X., “Mechanism and Thermodynamics of Ion Selectivity in Aqueous‐Solutions of 18‐Crown‐6 Ether—A Molecular‐Dynamics Study,” Journal of the American Chemical Society 117 (1995): 6954–6960.
da Silva A. W. S. and Vranken W. F. A. C. P. Y. P. E., “AnteChamber PYthon Parser InterfacE,” BMC Research Notes 5 (2012): 367. PubMed PMC
Trajkovski M., da Silva M. W., and Plavec J., “Unique Structural Features of Interconverting Monomeric and Dimeric G‐Quadruplexes Adopted by a Sequence From the Intron of the N‐Myc Gene,” Journal of the American Chemical Society 134 (2012): 4132–4141. PubMed
Pérez A., Marchán I., Svozil D., et al., “Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers,” Biophysical Journal 92 (2007): 3817–3829. PubMed PMC
Krepl M., Zgarbová M., Stadlbauer P., et al., “Reference Simulations of Noncanonical Nucleic Acids With Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z‐DNA,” Journal of Chemical Theory and Computation 8 (2012): 2506–2520. PubMed PMC
Zgarbová M., Luque F. J., Sponer J., Cheatham T. E., Otyepka M., and Jurecka P., “Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters,” Journal of Chemical Theory and Computation 9 (2013): 2339–2354. PubMed PMC
Kührová P., Mlynsky V., Zgarbová M., et al., “Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen‐Bonding Interactions (Vol 15, Pg 3288, 2019),” Journal of Chemical Theory and Computation 15 (2019): 3288–3305. PubMed PMC
Kührová P., Mlynsky V., Zgarbová M., et al., “Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen‐Bonding Interactions,” Journal of Chemical Theory and Computation 15 (2019): 3288–3305. PubMed PMC
Fröhlking T., Mlynsky V., Janecek M., et al., “Automatic Learning of Hydrogen‐Bond Fixes in the AMBER RNA Force Field,” Journal of Chemical Theory and Computation 18 (2022): 4490–4502. PubMed PMC
Mlynsky V., Kührová P., Kühr T., et al., “Fine‐Tuning of the AMBER RNA Force Field With a New Term Adjusting Interactions of Terminal Nucleotides,” Journal of Chemical Theory and Computation 16 (2020): 3936–3946. PubMed
Mlynsky V., Kührová P., Stadlbauer P., et al., “Simple Adjustment of Intranucleotide Base‐Phosphate Interaction in the OL3 AMBER Force Field Improves RNA Simulations,” Journal of Chemical Theory and Computation 19 (2023): 8423–8433. PubMed PMC
Henkelman G. and Jónsson H., “Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points,” Journal of Chemical Physics 113 (2000): 9978–9985.
Ghoreishi D., Cerutti D. S., Fallon Z., Simmerling C., and Roitberg A. E., “Fast Implementation of the Nudged Elastic Band Method in AMBER,” Journal of Chemical Theory and Computation 15 (2019): 4699–4707. PubMed PMC
Bergonzo C., Campbell A. J., de los Santos C., Grollman A. P., and Simmerling C., “Energetic Preference of 8‐oxoG Eversion Pathways in a DNA Glycosylase,” Journal of the American Chemical Society 133 (2011): 14504–14506. PubMed PMC
Mlynsky V., Janecek M., Kührová P., et al., “Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications,” Journal of Chemical Theory and Computation 18 (2022): 2642–2656. PubMed
Pronk S., Pall S., Schulz R., et al., “GROMACS 4.5: A High‐Throughput and Highly Parallel Open Source Molecular Simulation Toolkit,” Bioinformatics 29 (2013): 845–854. PubMed PMC
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., and Berendsen H. J., “GROMACS: Fast, Flexible, and Free,” Journal of Computational Chemistry 26 (2005): 1701–1718. PubMed
Tribello G. A., Bonomi M., Branduardi D., Camilloni C., and Bussi G., “PLUMED 2: New Feathers for an Old Bird,” Computer Physics Communications 185 (2014): 604–613.
Nose S., “A Unified Formulation of the Constant Temperature Molecular‐Dynamics Methods,” Journal of Chemical Physics 81 (1984): 511–519.
Branduardi D., Gervasio F. L., and Parrinello M., “From A to B in Free Energy Space,” Journal of Chemical Physics 126 (2007): 054103‐1–054103‐10. PubMed
Bottaro S., Di Palma F., and Bussi G., “The Role of Nucleobase Interactions in RNA Structure and Dynamics,” Nucleic Acids Research 42 (2014): 13306–13314. PubMed PMC
Rajendran A., Endo M., Hidaka K., Teulade‐Fichou M. P., Mergny J. L., and Sugiyama H., “Small Molecule Binding to a G‐Hairpin and a G‐Triplex: A New Insight Into Anticancer Drug Design Targeting G‐Rich Regions,” Chemical Communications 51 (2015): 9181–9184. PubMed
Rajendran A., Endo M., Hidaka K., and Sugiyama H., “Direct and Single‐Molecule Visualization of the Solution‐State Structures of G‐Hairpin and G‐Triplex Intermediates,” Angewandte Chemie 53 (2014): 4107–4112. PubMed
Zhang A. Y. Q. and Balasubramanian S., “The Kinetics and Folding Pathways of Intramolecular G‐Quadruplex Nucleic Acids,” Journal of the American Chemical Society 134 (2012): 19297–19308. PubMed
Gray R. D. and Chaires J. B., “Kinetics and Mechanism of K‐ and Na‐Induced Folding of Models of Human Telomeric DNA Into G‐Quadruplex Structures,” Nucleic Acids Research 36 (2008): 4191–4203. PubMed PMC
Li Y., Liu C., Feng X. J., Xu Y. Z., and Liu B. F., “Ultrafast Microfluidic Mixer for Tracking the Early Folding Kinetics of Human Telomere G‐Quadruplex,” Analytical Chemistry 86 (2014): 4333–4339. PubMed
Souaille M. and Roux B., “Extension to the Weighted Histogram Analysis Method: Combining Umbrella Sampling With Free Energy Calculations,” Computer Physics Communications 135 (2001): 40–57.
Shirts M. R. and Chodera J. D., “Statistically Optimal Analysis of Samples From Multiple Equilibrium States,” Journal of Chemical Physics 129 (2008): 124105. PubMed PMC
Tan Z. Q., Gallicchio E., Lapelosa M., and Levy R. M., “Theory of Binless Multi‐State Free Energy Estimation With Applications to Protein‐Ligand Binding,” Journal of Chemical Physics 136 (2012): 144102. PubMed PMC
Spiwok V. and Králová B., “Metadynamics in the Conformational Space Nonlinearly Dimensionally Reduced by Isomap,” Journal of Chemical Physics 135 (2011): 224504. PubMed
Spiwok V., Oborsky P., Pazurikova J., Krenek A., and Kralova B., “Nonlinear vs. Linear Biasing in Trp‐Cage Folding Simulations,” Journal of Chemical Physics 142 (2015): 115101‐1–115101‐8. PubMed
Dijkstra E. W., “A Note on Two Problems in Connexion With Graphs,” Numerische Mathematik 1 (1959): 269–271.