Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field

. 2022 Jul 12 ; 18 (7) : 4490-4502. [epub] 20220614

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35699952

The capability of current force fields to reproduce RNA structural dynamics is limited. Several methods have been developed to take advantage of experimental data in order to enforce agreement with experiments. Here, we extend an existing framework which allows arbitrarily chosen force-field correction terms to be fitted by quantification of the discrepancy between observables back-calculated from simulation and corresponding experiments. We apply a robust regularization protocol to avoid overfitting and additionally introduce and compare a number of different regularization strategies, namely, L1, L2, Kish size, relative Kish size, and relative entropy penalties. The training set includes a GACC tetramer as well as more challenging systems, namely, gcGAGAgc and gcUUCGgc RNA tetraloops. Specific intramolecular hydrogen bonds in the AMBER RNA force field are corrected with automatically determined parameters that we call gHBfixopt. A validation involving a separate simulation of a system present in the training set (gcUUCGgc) and new systems not seen during training (CAAU and UUUU tetramers) displays improvements regarding the native population of the tetraloop as well as good agreement with NMR experiments for tetramers when using the new parameters. Then, we simulate folded RNAs (a kink-turn and L1 stalk rRNA) including hydrogen bond types not sufficiently present in the training set. This allows a final modification of the parameter set which is named gHBfix21 and is suggested to be applicable to a wider range of RNA systems.

Zobrazit více v PubMed

Teijaro J. R.; Farber D. L. COVID-19 vaccines: modes of immune activation and future challenges. Nat. Rev. Immunol. 2021, 21, 195–197. 10.1038/s41577-021-00526-x. PubMed DOI PMC

Matsui M.; Corey D. R. Non-coding RNAs as drug targets. Nat. Rev. Drug. Discovery 2017, 16, 167–179. 10.1038/nrd.2016.117. PubMed DOI PMC

Šponer J.; Bussi G.; Krepl M.; Banáš P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; Walter N. G.; Otyepka M. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018, 118, 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Bernardi R. C.; Melo M. C.; Schulten K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 872–877. 10.1016/j.bbagen.2014.10.019. PubMed DOI PMC

Mlỳnskỳ V.; Bussi G. Exploring RNA structure and dynamics through enhanced sampling simulations. Curr. Opin. Struc. Biol. 2018, 49, 63–71. 10.1016/j.sbi.2018.01.004. PubMed DOI

Condon D. E.; Kennedy S. D.; Mort B. C.; Kierzek R.; Yildirim I.; Turner D. H. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J. Chem. Theory Comput. 2015, 11, 2729.10.1021/ct501025q. PubMed DOI PMC

Bergonzo C.; Henriksen N. M.; Roe D. R.; Cheatham T. E. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. RNA 2015, 21, 1578–1590. 10.1261/rna.051102.115. PubMed DOI PMC

Bottaro S.; Banáš P.; Šponer J.; Bussi G. Free Energy Landscape of GAGA and UUCG RNA Tetraloops. J. Phys. Chem. Lett. 2016, 7, 4032.10.1021/acs.jpclett.6b01905. PubMed DOI

Mráziková K.; Mlynsky V.; Kuhrova P.; Pokorná P.; Kruse H.; Krepl M.; Otyepka M.; Banas P.; Sponer J. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. J. Chem. Theory Comput. 2020, 16, 7601–7617. 10.1021/acs.jctc.0c00801. PubMed DOI

Norgaard A. B.; Ferkinghoff-Borg J.; Lindorff-Larsen K. Experimental parameterization of an energy function for the simulation of unfolded proteins. Biophys. J. 2008, 94, 182–192. 10.1529/biophysj.107.108241. PubMed DOI PMC

Li D.-W.; Brüschweiler R. Iterative optimization of molecular mechanics force fields from NMR data of full-length proteins. J. Chem. Theory Comput. 2011, 7, 1773–1782. 10.1021/ct200094b. PubMed DOI

Cesari A.; Gil-Ley A.; Bussi G. Combining simulations and solution experiments as a paradigm for RNA force field refinement. J. Chem. Theory Comput. 2016, 12, 6192–6200. 10.1021/acs.jctc.6b00944. PubMed DOI

Cesari A.; Bottaro S.; Lindorff-Larsen K.; Banáš P.; Šponer J.; Bussi G. Fitting corrections to an RNA force field using experimental data. J. Chem. Theory Comput. 2019, 15, 3425–3431. 10.1021/acs.jctc.9b00206. PubMed DOI

Köfinger J.; Hummer G. Empirical optimization of molecular simulation force fields by Bayesian inference. Eur. Phys. J. B 2021, 94, 245.10.1140/epjb/s10051-021-00234-4. DOI

Orioli S.; Larsen A. H.; Bottaro S.; Lindorff-Larsen K. How to learn from inconsistencies: Integrating molecular simulations with experimental data. Prog. Prog. Mol. Biol. Transl 2020, 170, 123–176. 10.1016/bs.pmbts.2019.12.006. PubMed DOI

Fröhlking T.; Bernetti M.; Calonaci N.; Bussi G. Toward empirical force fields that match experimental observables. J. Chem. Phys. 2020, 152, 230902.10.1063/5.0011346. PubMed DOI

Pitera J. W.; Chodera J. D. On the use of experimental observations to bias simulated ensembles. J. Chem. Theory Comput. 2012, 8, 3445–3451. 10.1021/ct300112v. PubMed DOI

White A. D.; Voth G. A. Efficient and minimal method to bias molecular simulations with experimental data. J. Chem. Theory Comput. 2014, 10, 3023–3030. 10.1021/ct500320c. PubMed DOI

Hummer G.; Köfinger J. Bayesian ensemble refinement by replica simulations and reweighting. J. Chem. Phys. 2015, 143, 243150.10.1063/1.4937786. PubMed DOI

Bonomi M.; Camilloni C.; Cavalli A.; Vendruscolo M. Metainference: ABayesian inference method for heterogeneous systems. Sci. Adv. 2016, 2, e1501177.10.1126/sciadv.1501177. PubMed DOI PMC

Cesari A.; Reißer S.; Bussi G. Using the maximum entropy principle to combine simulations and solution experiments. Computation 2018, 6, 15.10.3390/computation6010015. DOI

Richardson J. S.; Schneider B.; Murray L. W.; Kapral G. J.; Immormino R. M.; Headd J. J.; Richardson D. C.; Ham D.; Hershkovits E.; Williams L. D.; Keating K. S.; Pyle A. M.; Micallef D.; Westbrook J.; Berman H. M. RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution). RNA 2008, 14, 465.10.1261/rna.657708. PubMed DOI PMC

Kührová P.; Mlỳnskỳ V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the performance of the AMBER RNA force field by tuning the hydrogen-bonding interactions. J. Chem. Theory Comput. 2019, 15, 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC

Mlýnský V.; Kührová P.; Kühr T.; Otyepka M.; Bussi G.; Banáš P.; Šponer J. Fine-tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. J. Chem. Theory Comput. 2020, 16, 3936–3946. 10.1021/acs.jctc.0c00228. PubMed DOI

Tan D.; Piana S.; Dirks R. M.; Shaw D. E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U.S.A 2018, 115, E1346–E1355. 10.1073/pnas.1713027115. PubMed DOI PMC

Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J. Am. Chem. Soc. 1995, 117, 5179–5197. J. Am. Chem. Soc. 1996, 118, 2309–2309. 10.1021/ja955032e. DOI

Wang J.; Cieplak P.; Kollman P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 2000, 21, 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI

Pérez A.; Marchán I.; Svozil D.; Sponer J.; Cheatham T. E.; Laughton C. A.; Orozco M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007, 92, 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC

Zgarbová M.; Otyepka M.; Šponer J.; Mládek A.; Banáš P.; Cheatham T. E.; Jurečka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7, 2886–2902. 10.1021/ct200162x. PubMed DOI PMC

Steinbrecher T.; Latzer J.; Case D. A. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012, 8, 4405–4412. 10.1021/ct300613v. PubMed DOI PMC

Mlýnský V.; Kührová P.; Zgarbová M.; Jurečka P.; Walter N. G.; Otyepka M.; Šponer J.; Banáš P. Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with ϵ/ζ Force Field Reparametrizations. J. Phys. Chem. B 2015, 119, 4220–4229. 10.1021/jp512069n. PubMed DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Nozinovic S.; Furtig B.; Jonker H. R. A.; Richter C.; Schwalbe H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res. 2010, 38, 683.10.1093/nar/gkp956. PubMed DOI PMC

Klosterman P. S.; Shah S. A.; Steitz T. A. Crystal structures of two plasmid copy control related RNA duplexes: an 18 base pair duplex at 1.20 Å resolution and a 19 base pair duplex at 1.55 Å resolution. Biochemistry 1999, 38, 14784–14792. 10.1021/bi9912793. PubMed DOI

Dock-Bregeon A.; Chevrier B.; Podjarny A.; Johnson J.; De Bear J.; Gough G.; Gilham P.; Moras D. Crystallographic structure of an RNA helix:[U (UA) 6A] 2. J. Mol. Biol. 1989, 209, 459–474. 10.1016/0022-2836(89)90010-7. PubMed DOI

Klein D.; Moore P.; Steitz T. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. J. Mol. Biol. 2004, 340, 141–177. 10.1016/j.jmb.2004.03.076. PubMed DOI

Tishchenko S.; Gabdulkhakov A.; Nevskaya N.; Sarskikh A.; Kostareva O.; Nikonova E.; Sycheva A.; Moshkovskii S.; Garber M.; Nikonov S. High-resolution crystal structure of the isolated ribosomal L1 stalk. Acta Crystallogr. D 2012, 68, 1051–1057. 10.1107/S0907444912020136. PubMed DOI

Case D. A.; Cheatham T. E. III; Darden T.; Gohlke H.; Luo R.; Merz Jr K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC

Case D. A.; Betz R. M.; Cerutti D. S. III; Cheatham T.; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Götz A. W.; Homeyer N.; Izadi S.; Janowski P.; Kaus J.; Kovalenko A.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Luchko T.; Luo R.; Madej B.; Mermelstein D.; Merz K. M.; Monard G.; Nguyen H.; Nguyen H. T.; Omelyan I.; Onufriev A.; Roe D. R.; Roitberg A.; Sagui C.; Simmerling C. L.; Botello-Smith W. M.; J. Swails R. C. W.; Wang J.; Wolf R. M.; Wu X.; Xiao L.; Kollman P. A.. AMBER16; University of California: San Francisco, CA, 2016.

Kührová P.; Best R. B.; Bottaro S.; Bussi G.; Šponer J.; Otyepka M.; Banáš P. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J. Chem. Theory Comput. 2016, 12, 4534–4548. 10.1021/acs.jctc.6b00300. PubMed DOI PMC

Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI

Case D. A.; Ben-Shalom I. Y.; Brozell S. R.; Cerutti D. S. III; Cheatham T.; Cruzeiro V. W. D.; Darden T. A.; Duke R. E.; Ghoreishi D.; Gilson M. K.; Gohlke H.; Götz A. W.; Greene D.; Harris R.; Homeyer N.; Huang Y.; Izadi S.; Kovalenko A.; Kurtzman T.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Liu J.; Luchko T.; Luo R.; Mermelstein D. J.; Merz K. M.; Miao Y.; Monard G.; Nguyen C.; Nguyen H.; Omelyan I.; Onufriev A.; Pan F.; Qi R.; Roe D. R.; Roitberg A.; Sagui C.; Schott-Verdugo S.; Shen J.; Simmerling C. L.; Smith J.; SalomonFerrer R.; Swails J.; Walker R. C.; Wang J.; Wei H.; Wolf R. M.; Wu X.; Xiao L.; York D. M.; Kollman P. A.. AMBER18; University of California: San Francisco, CA, 2018.

Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. 10.1016/j.softx.2015.06.001. DOI

Shirts M. R.; Klein C.; Swails J. M.; Yin J.; Gilson M. K.; Mobley D. L.; Case D. A.; Zhong E. D. Lessons learned from comparing molecular dynamics engines on the SAMPL5 dataset. J. Comput. Aided Mol. Des. 2017, 31, 147–161. 10.1007/s10822-016-9977-1. PubMed DOI PMC

Wang L.; Friesner R. A.; Berne B. J. Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2). J. Phys. Chem. B 2011, 115, 9431–9438. 10.1021/jp204407d. PubMed DOI PMC

Laio A.; Parrinello M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A 2002, 99, 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC

Barducci A.; Bussi G.; Parrinello M. Well-tempered metadynamics: a smoothly converging and tunable free-energy method. Phys. Rev. Lett. 2008, 100, 020603.10.1103/PhysRevLett.100.020603. PubMed DOI

Bussi G.; Laio A. Using metadynamics to explore complex free-energy landscapes. Nat. Rev. Phys. 2020, 2, 200–212. 10.1038/s42254-020-0153-0. DOI

Camilloni C.; Provasi D.; Tiana G.; Broglia R. A. Exploring the protein G helix free-energy surface by solute tempering metadynamics. Proteins 2008, 71, 1647–1654. 10.1002/prot.21852. PubMed DOI

Mlynsky V.; Janecek M.; Kuhrova P.; Frohlking T.; Otyepka M.; Bussi G.; Banas P.; Sponer J. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. J. Chem. Theory Comput. 2022, 18, 2642–2656. 10.1021/acs.jctc.1c01222. PubMed DOI

Mermelstein D. J.; Lin C.; Nelson G.; Kretsch R.; McCammon J. A.; Walker R. C. Fast and flexible gpu accelerated binding free energy calculations within the amber molecular dynamics package. J. Comput. Chem. 2018, 39, 1354–1358. 10.1002/jcc.25187. PubMed DOI

Bottaro S.; Di Palma F.; Bussi G. The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Res. 2014, 42, 13306.10.1093/nar/gku972. PubMed DOI PMC

Zerze G. H.; Piaggi P. M.; Debenedetti P. G. A Computational Study of RNA Tetraloop Thermodynamics, Including Misfolded States. J. Phys. Chem. B 2021, 125 (50), 13685–13695. 10.1021/acs.jpcb.1c08038. PubMed DOI

Bonomi M.; Parrinello M. Enhanced sampling in the well-tempered ensemble. Phys. Rev. Lett. 2010, 104, 190601.10.1103/PhysRevLett.104.190601. PubMed DOI

Bussi G.; Gervasio F. L.; Laio A.; Parrinello M. Free-energy landscape for β hairpin folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 2006, 128, 13435–13441. 10.1021/ja062463w. PubMed DOI

Best R. B.; Hummer G.; Eaton W. A. Native contacts determine protein folding mechanisms in atomistic simulations. Proc. Natl. Acad. Sci. U.S.A 2013, 110, 17874–17879. 10.1073/pnas.1311599110. PubMed DOI PMC

Tribello G. A.; Bonomi M.; Branduardi D.; Camilloni C.; Bussi G. PLUMED 2: New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613. 10.1016/j.cpc.2013.09.018. DOI

Bussi G. Hamiltonian replica exchange in GROMACS: a flexible implementation. Mol. Phys. 2014, 112, 379–384. 10.1080/00268976.2013.824126. DOI

Souaille M.; Roux B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 2001, 135, 40–57. 10.1016/S0010-4655(00)00215-0. DOI

Shirts M. R.; Chodera J. D. Statistically optimal analysis of samples from multiple equilibrium states. J. Chem. Phys. 2008, 129, 124105.10.1063/1.2978177. PubMed DOI PMC

Tan Z.; Gallicchio E.; Lapelosa M.; Levy R. M. Theory of binless multi-state free energy estimation with applications to protein-ligand binding. J. Chem. Phys. 2012, 136, 144102.10.1063/1.3701175. PubMed DOI PMC

Karplus M. Vicinal proton coupling in nuclear magnetic resonance. J. Am. Chem. Soc. 1963, 85, 2870–2871. 10.1021/ja00901a059. DOI

Bottaro S.; Bussi G.; Pinamonti G.; Reißer S.; Boomsma W.; Lindorff-Larsen K. Barnaba: software for analysis of nucleic acid structures and trajectories. RNA 2019, 25, 219–231. 10.1261/rna.067678.118. PubMed DOI PMC

Condon D. E.; Kennedy S. D.; Mort B. C.; Kierzek R.; Yildirim I.; Turner D. H. Stacking in RNA: NMR of Four Tetramers Benchmark Molecular Dynamics. J. Chem. Theory Comput. 2015, 11, 2729–2742. 10.1021/ct501025q. PubMed DOI PMC

Zhao J.; Kennedy S. D.; Berger K. D.; Turner D. H. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 1968–1984. 10.1021/acs.jctc.9b00912. PubMed DOI

Bottaro S.; Bussi G.; Kennedy S. D.; Turner D. H.; Lindorff-Larsen K. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations. Sci. Adv. 2018, 4, eaar8521.10.1126/sciadv.aar8521. PubMed DOI PMC

Gray P. G.; Kish L. Survey Sampling. J. Royal Stat. Soc. A (General) 1969, 132, 272.10.2307/2343791. DOI

Rangan R.; Bonomi M.; Heller G. T.; Cesari A.; Bussi G.; Vendruscolo M. Determination of structural ensembles of proteins: restraining vs reweighting. J. Chem. Theory Comput. 2018, 14, 6632–6641. 10.1021/acs.jctc.8b00738. PubMed DOI

Grossfield A.; Zuckerman D. M. Quantifying uncertainty and sampling quality in biomolecular simulations. Annu. Rep. Comput. Chem. 2009, 5, 23–48. 10.1016/S1574-1400(09)00502-7. PubMed DOI PMC

Flyvbjerg H.; Petersen H. G. Error estimates on averages of correlated data. J. Chem. Phys. 1989, 91, 461–466. 10.1063/1.457480. DOI

Bonomi M.; Bussi G.; Camilloni C.; Tribello G. A.; Banáš P.; Barducci A.; Bernetti M.; Bolhuis P. G.; Bottaro S.; Branduardi D.; et al. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 2019, 16, 670–673. 10.1038/s41592-019-0506-8. PubMed DOI

Chen A. A.; García A. E. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc. Natl. Acad. Sci. U.S.A 2013, 110, 16820–16825. 10.1073/pnas.1309392110. PubMed DOI PMC

Kuhrova P.; Banáš P.; Best R. B.; Sponer J.; Otyepka M. Computer folding of RNA tetraloops? Are we there yet?. J. Chem. Theory Comput. 2013, 9, 2115–2125. 10.1021/ct301086z. PubMed DOI

Yang C.; Lim M.; Kim E.; Pak Y. Predicting RNA Structures via a Simple van der Waals Correction to an All-Atom Force Field. J. Chem. Theory Comput. 2017, 13, 395–399. 10.1021/acs.jctc.6b00808. PubMed DOI

Gil-Ley A.; Bottaro S.; Bussi G. Empirical corrections to the amber RNA force field with target metadynamics. J. Chem. Theory Comput. 2016, 12, 2790–2798. 10.1021/acs.jctc.6b00299. PubMed DOI PMC

Aytenfisu A. H.; Spasic A.; Grossfield A.; Stern H. A.; Mathews D. H. Revised Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. J. Chem. Theory Comput. 2017, 13, 900–915. 10.1021/acs.jctc.6b00870. PubMed DOI PMC

Bergonzo C.; Cheatham T. E. III Improved force field parameters lead to a better description of RNA structure. J. Chem. Theory Comput. 2015, 11, 3969–3972. 10.1021/acs.jctc.5b00444. PubMed DOI

Lescoute A.; Leontis N. B.; Massire C.; Westhof E. Recurrent structural RNA motifs, Isostericity Matrices and sequence alignments. Nucleic Acids Res. 2005, 33, 2395–2409. 10.1093/nar/gki535. PubMed DOI PMC

Bottaro S.; Gil-Ley A.; Bussi G. RNA folding pathways in stop motion. Nucleic Acids Res. 2016, 44, 5883–5891. 10.1093/nar/gkw239. PubMed DOI PMC

Zhao J.; Kennedy S. D.; Berger K. D.; Turner D. H. Nuclear Magnetic Resonance of Single-Stranded RNAs and DNAs of CAAU and UCAAUC as Benchmarks for Molecular Dynamics Simulations. J. Chem. Theory Comput. 2020, 16, 1968–1984. 10.1021/acs.jctc.9b00912. PubMed DOI

Bottaro S.; Banáš P.; Šponer J.; Bussi G. Correction to ”Free Energy Landscape of GAGA and UUCG RNA Tetraloops. J. Phys. Chem. Lett. 2018, 9, 1674.10.1021/acs.jpclett.8b00754. PubMed DOI

Kührová P.; Mlỳnskỳ V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Correction to ”Improving the performance of the AMBER RNA force field by tuning the hydrogen-bonding interactions. J. Chem. Theory Comput. 2020, 16, 818–819. 10.1021/acs.jctc.9b01189. PubMed DOI PMC

Bottaro S.; Nichols P. J.; Vögeli B.; Parrinello M.; Lindorff-Larsen K. Integrating NMR and simulations reveals motions in the UUCG tetraloop. Nucleic Acids Res. 2020, 48, 5839–5848. 10.1093/nar/gkaa399. PubMed DOI PMC

Krepl M.; Réblová K.; Koca J.; Sponer J. Bioinformatics and Molecular Dynamics Simulation Study of L1 Stalk Non-Canonical rRNA Elements: Kink-Turns, Loops, and Tetraloops. J. Phys. Chem. B 2013, 117, 5540–5555. 10.1021/jp401482m. PubMed DOI

Goodfellow I.; Bengio Y.; Courville A.. Deep learning; MIT Press, 2016.

Calonaci N.; Jones A.; Cuturello F.; Sattler M.; Bussi G. Machine learning a model for RNA structure prediction. NAR Genom. Bioinform 2020, 2, lqaa090.10.1093/nargab/lqaa090. PubMed DOI PMC

Nichols P. J.; Henen M. A.; Born A.; Strotz D.; Güntert P.; Vögeli B. High-resolution small RNA structures from exact nuclear Overhauser enhancement measurements without additional restraints. Commun. Biol. 2018, 1, 61.10.1038/s42003-018-0067-x. PubMed DOI PMC

Cate J. H.; Gooding A. R.; Podell E.; Zhou K.; Golden B. L.; Kundrot C. E.; Cech T. R.; Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 1996, 273, 1678–1685. 10.1126/science.273.5282.1678. PubMed DOI

Batey R. T.; Rambo R. P.; Doudna J. A. Tertiary motifs in RNA structure and folding. Angew. Chem., Int. Ed. 1999, 38, 2326–2343. 10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3. PubMed DOI

Tamura M.; Holbrook S. R. Sequence and structural conservation in RNA ribose zippers. J. Mol. Biol. 2002, 320, 455–474. 10.1016/S0022-2836(02)00515-6. PubMed DOI

Mokdad A.; Krasovska M. V.; Sponer J.; Leontis N. B. Structural and evolutionary classification of G/U wobble basepairs in the ribosome. Nucleic Acids Res. 2006, 34, 1326–1341. 10.1093/nar/gkl025. PubMed DOI PMC

Nissen P.; Ippolito J. A.; Ban N.; Moore P. B.; Steitz T. A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. U.S.A 2001, 98, 4899–4903. 10.1073/pnas.081082398. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...