Structure of an internal loop motif with three consecutive U•U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV-2 genomic RNA
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
SCHW 701/27-1
Deutsche Forschungsgemeinschaft
23-05639S
Czech Science Foundation
The Center for Biomolecular Magnetic Resonance (BMRZ)
PubMed
38783391
PubMed Central
PMC11194097
DOI
10.1093/nar/gkae349
PII: 7680630
Knihovny.cz E-zdroje
- MeSH
- 3' nepřekládaná oblast * MeSH
- chybné párování bází * MeSH
- COVID-19 virologie MeSH
- genom virový MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- nukleotidové motivy * MeSH
- párování bází MeSH
- Plasmodium falciparum genetika MeSH
- RNA virová * chemie genetika MeSH
- SARS-CoV-2 * genetika chemie MeSH
- simulace molekulární dynamiky MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 3' nepřekládaná oblast * MeSH
- RNA virová * MeSH
The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.
Institute of Organic Chemistry and Chemical Biology Max von Laue Str 7 60438 Frankfurt Germany
Institute of Pharmaceutical Chemistry University of Marburg Marbacher Weg 6 35037 Marburg Germany
Zobrazit více v PubMed
Fürtig B., Wenter P., Reymond L., Richter C., Pitsch S., Schwalbe H. Conformational dynamics of bistable RNAs studied by time-resolved NMR spectroscopy. J. Am. Chem. Soc. 2007; 129:16222–16229. PubMed
Kierzek R., Burkard M.E., Turner D.H. Thermodynamics of single mismatches in RNA duplexes. Biochemistry. 1999; 38:14214–14223. PubMed
Hou Y.M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988; 333:140–145. PubMed
Musier-Forsyth K., Usman N., Scaringe S., Doudna J., Green R., Schimmel P. Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science. 1991; 253:784–786. PubMed
Musier-Forsyth K., Schimmel P. Functional contacts of a transfer RNA synthetase with 2’-hydroxyl groups in the RNA minor groove. Nature. 1992; 357:513–515. PubMed
Błaszczyk L., Rypniewski W., Kiliszek A. Structures of RNA repeats associated with neurological diseases. Wiley Interdiscip. Rev. RNA. 2017; 8:e1412. PubMed
Napierała M., Krzyzosiak W.J. CUG repeats present in myotonin kinase RNA form metastable “slippery” hairpins. J. Biol. Chem. 1997; 272:31079–31085. PubMed
Kiliszek A., Kierzek R., Krzyzosiak W.J., Rypniewski W. Structural insights into CUG repeats containing the ‘stretched U-U wobble’: implications for myotonic dystrophy. Nucleic Acids Res. 2009; 37:4149–4156. PubMed PMC
SantaLucia J., Kierzek R., Turner D.H. Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochemistry. 1990; 29:8813–8819. PubMed
SantaLucia J., Kierzek R., Turner D.H Stabilities of consecutive A.C, C.C, G.G, U.C, and U.U mismatches in RNA internal loops: Evidence for stable hydrogen-bonded U.U and C.C+ pairs. Biochemistry. 1991; 30:8242–8251. PubMed
He L., Kierzek R., SantaLucia J., Walter A.E., Turner D.H. Nearest-neighbor parameters for G.U mismatches: 5’GU3’/3’UG5’ is destabilizing in the contexts CGUG/GUGC, UGUA/AUGU, and AGUU/UUGA but stabilizing in GGUC/CUGG. Biochemistry. 1991; 30:11124–11132. PubMed
Wu M., McDowell J.A., Turner D.H. A periodic table of symmetric tandem mismatches in RNA. Biochemistry. 1995; 34:3204–3211. PubMed
Cate J.H., Doudna J.A. Metal-binding sites in the major groove of a large ribozyme domain. Structure. 1996; 4:1221–1229. PubMed
Kieft J.S., Tinoco I. Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt (III) hexammine. Structure. 1997; 5:713–721. PubMed
Rüdisser S., Tinoco I. Solution structure of cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches. J. Mol. Biol. 2000; 295:1211–1223. PubMed
Schmitz M., Tinoco I. Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA. RNA. 2000; 6:1212–1225. PubMed PMC
Vidovic I., Nottrott S., Hartmuth K., Lührmann R., Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol. Cell. 2000; 6:1331–1342. PubMed
Theimer C.A., Finger L.D., Trantirek L., Feigon J. Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc. Natl. Acad. Sci. U.S.A. 2003; 100:449–454. PubMed PMC
Correll C.C., Freeborn B., Moore P.B., Steitz T.A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997; 91:705–712. PubMed
Dallas A., Moore P.B. The loop E-loop D region of Escherichia coli 5S rRNA: The solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997; 5:1639–1653. PubMed
Stoldt M., Wöhnert J., Ohlenschläger O., Görlach M., Brown L.R. The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition. EMBO J. 1999; 18:6508–6521. PubMed PMC
Wang Y.X., Huang S., Draper D.E. Structure of a U.U pair within a conserved ribosomal RNA hairpin. Nucleic Acids Res. 1996; 24:2666–2672. PubMed PMC
Baeyens K.J., de Bondt H.L., Holbrook S.R. Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat. Struct. Biol. 1995; 2:56–62. PubMed
Lietzke S.E., Barnes C.L., Berglund J.A., Kundrot C.E. The structure of an RNA dodecamer shows how tandem U–U base pairs increase the range of stable RNA structures and the diversity of recognition sites. Structure. 1996; 4:917–930. PubMed
Kumar A., Park H., Fang P., Parkesh R., Guo M., Nettles K.W., Disney M.D. Myotonic dystrophy type 1 RNA crystal structures reveal heterogeneous 1 × 1 nucleotide UU internal loop conformations. Biochemistry. 2011; 50:9928–9935. PubMed PMC
Rypniewski W., Banaszak K., Kuliński T., Kiliszek A. Watson–Crick-like pairs in CCUG repeats: evidence for tautomeric shifts or protonation. RNA. 2016; 22:22–31. PubMed PMC
Sashital D.G., Venditti V., Angers C.G., Cornilescu G., Butcher S.E. Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human. RNA. 2007; 13:328–338. PubMed PMC
Stagno J.R., Altieri A.S., Bubunenko M., Tarasov S.G., Li J., Court D.L., Byrd R.A., Ji X. Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res. 2011; 39:7803–7815. PubMed PMC
Ohlenschläger O., Wöhnert J., Bucci E., Seitz S., Häfner S., Ramachandran R., Zell R., Görlach M. The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure. 2004; 12:237–248. PubMed
Du Z., Yu J., Ulyanov N.B., Andino R., James T.L. Solution structure of a consensus stem–loop D RNA domain that plays important roles in regulating translation and replication in enteroviruses and rhinoviruses. Biochemistry. 2004; 43:11959–11972. PubMed
Goebel S.J., Hsue B., Dombrowski T.F., Masters P.S. Characterization of the RNA components of a putative molecular switch in the 3’ untranslated region of the murine coronavirus genome. J. Virol. 2004; 78:669–682. PubMed PMC
Zhang Y., Huang K., Xie D., Lau J.Y., Shen W., Li P., Wang D., Zou Z., Shi S., Ren H. et al. . In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nat. Commun. 2021; 12:5695. PubMed PMC
Temmam S., Vongphayloth K., Baquero E., Munier S., Bonomi M., Regnault B., Douangboubpha B., Karami Y., Chrétien D., Sanamxay D. et al. . Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022; 604:330–336. PubMed
Lee S., Lee Y.-S., Choi Y., Son A., Park Y., Lee K.-M., Kim J., Kim J.-S., Kim V.N. The SARS-CoV-2 RNA interactome. Mol. Cell. 2021; 81:2838–2850. PubMed PMC
Schmidt N., Lareau C.A., Keshishian H., Ganskih S., Schneider C., Hennig T., Melanson R., Werner S., Wei Y., Zimmer M. et al. . The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat. Microbiol. 2021; 6:339–353. PubMed PMC
Sun L., Li P., Ju X., Rao J., Huang W., Ren L., Zhang S., Xiong T., Xu K., Zhou X. et al. . In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell. 2021; 184:1865–1883. PubMed PMC
Castella S., Bernard R., Corno M., Fradin A., Larcher J.-C. Ilf3 and NF90 functions in RNA biology. Wiley Interdiscip. Rev. RNA. 2015; 6:243–256. PubMed
Wacker A., Weigand J.E., Akabayov S.R., Altincekic N., Bains J.K., Banijamali E., Binas O., Castillo-Martinez J., Cetiner E., Ceylan B. et al. . Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res. 2020; 48:12415–12435. PubMed PMC
Lan T.C.T., Allan M.F., Malsick L.E., Woo J.Z., Zhu C., Zhang F., Khandwala S., Nyeo S.S.Y., Sun Y., Guo J.U. et al. . Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun. 2022; 13:1128. PubMed PMC
Huston N.C., Wan H., Strine M.S., Tavares C.A., de R., Wilen C.B., Pyle A.M Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol. Cell. 2021; 81:584–598. PubMed PMC
Wishart D.S., Bigam C.G., Yao J., Abildgaard F., Dyson H.J., Oldfield E., Markley J.L., Sykes B.D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR. 1995; 6:135–140. PubMed
Maurer K. Indirect referencing of 31P and 19F NMR spectra. J. Magn. Reson. B. 1996; 113:177–178. PubMed
Keller R. The Computer Aided Resonance Assignment Tutorial. 2004; CANTINA Verlag.
Hwang T.L., Shaka A.J. Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. A. 1995; 112:275–279.
Schanda P., Brutscher B. Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J. Am. Chem. Soc. 2005; 127:8014–8015. PubMed
Wöhnert J., Görlach M., Schwalbe H. Triple resonance experiments for the simultaneous correlation of H6/H5 and exchangeable protons of pyrimidine nucleotides in 13C,15N-labeled RNA applicable to larger RNA molecules. J. Biomol. NMR. 2003; 26:79–83. PubMed
Sklenár V., Peterson R.D., Rejante M.R., Feigon J. Two- and three-dimensional HCN experiments for correlating base and sugar resonances in 15N,13C-labeled RNA oligonucleotides. J. Biomol. NMR. 1993; 3:721–727. PubMed
Sklenár V., Dieckmann T., Butcher S.E., Feigon J. Optimization of triple-resonance HCN experiments for application to larger RNA oligonucleotides. J. Magn. Reson. 1998; 130:119–124. PubMed
Piotto M., Saudek V., Sklenár V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR. 1992; 2:661–665. PubMed
Sklenar V., Piotto M., Leppik R., Saudek V. Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson. A. 1993; 102:241–245.
Pardi A., Nikonowicz E.P. Simple procedure for resonance assignment of the sugar protons in carbon-13 labeled RNAs. J. Am. Chem. Soc. 1992; 114:9202–9203.
Kay L.E., Xu G.Y., Singer A.U., Muhandiram D.R., Formankay J.D. A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J Magn Reson B. 1993; 101:333–337.
Marino J.P., Schwalbe H., Anklin C., Bermel W., Crothers D.M., Griesinger C. Sequential correlation of anomeric ribose protons and intervening phosphorus in RNA oligonucleotides by a 1H, 13C, 31P triple resonance experiment: HCP-CCH-TOCSY. J. Biomol. NMR. 1995; 5:87–92. PubMed
Schanda P., van Melckebeke H., Brutscher B. Speeding up three-dimensional protein NMR experiments to a few minutes. J. Am. Chem. Soc. 2006; 128:9042–9043. PubMed
Lescop E., Schanda P., Brutscher B. A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J. Magn. Reson. 2007; 187:163–169. PubMed
Schwalbe H., Marino J.P., Glaser S.J., Griesinger C. Measurement of H,H-coupling constants associated with .nu.1, .nu.2, and .nu.3 in uniformly 13C-labeled RNA by HCC-TOCSY-CCH-E.COSY. J. Am. Chem. Soc. 1995; 117:7251–7252.
Glaser S.J., Schwalbe H., Marino J.P., Griesinger C. Directed TOCSY, a method for selection of directed correlations by optimal combinations of isotropic and longitudinal mixing. J Magn Reson B. 1996; 112:160–180. PubMed
Rinnenthal J., Klinkert B., Narberhaus F., Schwalbe H. Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res. 2010; 38:3834–3847. PubMed PMC
Steinert H.S., Rinnenthal J., Schwalbe H. Individual basepair stability of DNA and RNA studied by NMR-detected solvent exchange. Biophys. J. 2012; 102:2564–2574. PubMed PMC
Varani G., Cheong C., Tinoco I. Structure of an unusually stable RNA hairpin. Biochemistry. 1991; 30:3280–3289. PubMed
Nozinovic S., Fürtig B., Jonker H.R.A., Richter C., Schwalbe H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res. 2010; 38:683–694. PubMed PMC
Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 1996; 14:51–55. PubMed
Mráziková K., Mlýnský V., Kührová P., Pokorná P., Kruse H., Krepl M., Otyepka M., Banáš P., Šponer J. UUCG RNA tetraloop as a formidable force-field challenge for MD simulations. J. Chem. Theory Comput. 2020; 16:7601–7617. PubMed
Case D.A., Aktulga H.M., Belfon K., Ben-Shalom I.Y., Brozell S.R., Cerutti D.S., Cheatham T.E., Cisneros G.A., Cruzeiro V.W., Darden T.A. et al. . AMBER 2021. 2021; San Francisco: University of California.
Zgarbová M., Otyepka M., Sponer J., Mládek A., Banáš P., Cheatham T.E., Jurečka P. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011; 7:2886–2902. PubMed PMC
Fröhlking T., Mlýnský V., Janeček M., Kührová P., Krepl M., Banáš P., Šponer J., Bussi G. Automatic learning of hydrogen-bond fixes in the AMBER RNA force field. J. Chem. Theory Comput. 2022; 18:4490–4502. PubMed PMC
Condon D.E., Kennedy S.D., Mort B.C., Kierzek R., Yildirim I., Turner D.H. Stacking in RNA: NMR of four tetramers benchmark molecular dynamics. J. Chem. Theory Comput. 2015; 11:2729–2742. PubMed PMC
Mlýnský V., Kührová P., Zgarbová M., Jurečka P., Walter N.G., Otyepka M., Šponer J., Banáš P. Reactive conformation of the active site in the hairpin ribozyme achieved by molecular dynamics simulations with ϵ/ζ force field reparametrizations. J. Phys. Chem. B. 2015; 119:4220–4229. PubMed
Tan D., Piana S., Dirks R.M., Shaw D.E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U.S.A. 2018; 115:E1346–E1355. PubMed PMC
Aytenfisu A.H., Spasic A., Grossfield A., Stern H.A., Mathews D.H. Revised RNA dihedral parameters for the Amber force field improve RNA molecular dynamics. J. Chem. Theory Comput. 2017; 13:900–915. PubMed PMC
Izadi S., Anandakrishnan R., Onufriev A.V. Building water models: a different approach. J. Phys. Chem. Lett. 2014; 5:3863–3871. PubMed PMC
Joung I.S., Cheatham T.E. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC
Krepl M., Vögele J., Kruse H., Duchardt-Ferner E., Wöhnert J., Sponer J. An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res. 2018; 46:6528–6543. PubMed PMC
Roe D.R., Cheatham T.E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013; 9:3084–3095. PubMed
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996; 14:33–38. PubMed
Fürtig B., Richter C., Wöhnert J., Schwalbe H. NMR spectroscopy of RNA. ChemBioChem. 2003; 4:936–962. PubMed
Shen L., Su Z., Yang K., Wu C., Becker T., Bell-Pedersen D., Zhang J., Sachs M.S. Structure of the translating Neurospora ribosome arrested by cycloheximide. Proc. Natl. Acad. Sci. U.S.A. 2021; 118:e2111862118. PubMed PMC
Hiregange D.-G., Rivalta A., Bose T., Breiner-Goldstein E., Samiya S., Cimicata G., Kulakova L., Zimmerman E., Bashan A., Herzberg O. et al. . Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Nucleic Acids Res. 2022; 50:1770–1782. PubMed PMC
Nicholson D., Salamina M., Panek J., Helena-Bueno K., Brown C.R., Hirt R.P., Ranson N.A., Melnikov S.V. Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nat. Commun. 2022; 13:591. PubMed PMC
Heus H.A., Wijmenga S.S., Hoppe H., Hilbers C.W. The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent. J. Mol. Biol. 1997; 271:147–158. PubMed
Chen G., Kierzek R., Yildirim I., Krugh T.R., Turner D.H., Kennedy S.D. Stacking effects on local structure in RNA: changes in the structure of tandem GA pairs when flanking GC pairs are replaced by isoG-isoC pairs. J. Phys. Chem. B. 2007; 111:6718–6727. PubMed PMC
Skrynnikov N.R., Dahlquist F.W., Kay L.E. Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J. Am. Chem. Soc. 2002; 124:12352–12360. PubMed
Fürtig B., Schnieders R., Richter C., Zetzsche H., Keyhani S., Helmling C., Kovacs H., Schwalbe H. Direct ¹³C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA. J. Biomol. NMR. 2016; 64:207–221. PubMed
Marušič M., Schlagnitweit J., Petzold K. RNA dynamics by NMR spectroscopy. ChemBioChem. 2019; 20:2685–2710. PubMed PMC
Petrov A.I., Zirbel C.L., Leontis N.B. WebFR3D—a server for finding, aligning and analyzing recurrent RNA 3D motifs. Nucleic Acids Res. 2011; 39:W50–W55. PubMed PMC
Wong W., Bai X., Brown A., Fernandez I.S., Hanssen E., Condron M., Tan Y.H., Baum J., Scheres S.H.W. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife. 2014; 3:e03080. PubMed PMC
Auffinger P., Westhof E. Water and ion binding around RNA and DNA (C,G) oligomers. J. Mol. Biol. 2000; 300:1113–1131. PubMed
Wagner G., Pardi A., Wuethrich K. Hydrogen bond length and proton NMR chemical shifts in proteins. J. Am. Chem. Soc. 1983; 105:5948–5949.
Jeffrey G.A., Yeon Y. The correlation between hydrogen-bond lengths and proton chemical shifts in crystals. Acta Crystallogr. B Struct. Sci. 1986; 42:410–413.
Barfield M., Dingley A.J., Feigon J., Grzesiek S. A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex. J. Am. Chem. Soc. 2001; 123:4014–4022. PubMed
Herschlag D., Pinney M.M. Hydrogen bonds: simple after all?. Biochemistry. 2018; 57:3338–3352. PubMed