Structure of an internal loop motif with three consecutive U•U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV-2 genomic RNA

. 2024 Jun 24 ; 52 (11) : 6687-6706.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38783391

Grantová podpora
SCHW 701/27-1 Deutsche Forschungsgemeinschaft
23-05639S Czech Science Foundation
The Center for Biomolecular Magnetic Resonance (BMRZ)

The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.

Erratum v

PubMed

Zobrazit více v PubMed

Fürtig  B., Wenter  P., Reymond  L., Richter  C., Pitsch  S., Schwalbe  H.  Conformational dynamics of bistable RNAs studied by time-resolved NMR spectroscopy. J. Am. Chem. Soc.  2007; 129:16222–16229. PubMed

Kierzek  R., Burkard  M.E., Turner  D.H.  Thermodynamics of single mismatches in RNA duplexes. Biochemistry. 1999; 38:14214–14223. PubMed

Hou  Y.M., Schimmel  P.  A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988; 333:140–145. PubMed

Musier-Forsyth  K., Usman  N., Scaringe  S., Doudna  J., Green  R., Schimmel  P.  Specificity for aminoacylation of an RNA helix: an unpaired, exocyclic amino group in the minor groove. Science. 1991; 253:784–786. PubMed

Musier-Forsyth  K., Schimmel  P.  Functional contacts of a transfer RNA synthetase with 2’-hydroxyl groups in the RNA minor groove. Nature. 1992; 357:513–515. PubMed

Błaszczyk  L., Rypniewski  W., Kiliszek  A.  Structures of RNA repeats associated with neurological diseases. Wiley Interdiscip. Rev. RNA. 2017; 8:e1412. PubMed

Napierała  M., Krzyzosiak  W.J.  CUG repeats present in myotonin kinase RNA form metastable “slippery” hairpins. J. Biol. Chem.  1997; 272:31079–31085. PubMed

Kiliszek  A., Kierzek  R., Krzyzosiak  W.J., Rypniewski  W.  Structural insights into CUG repeats containing the ‘stretched U-U wobble’: implications for myotonic dystrophy. Nucleic Acids Res.  2009; 37:4149–4156. PubMed PMC

SantaLucia  J., Kierzek  R., Turner  D.H.  Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. Biochemistry. 1990; 29:8813–8819. PubMed

SantaLucia  J., Kierzek  R., Turner  D.H  Stabilities of consecutive A.C, C.C, G.G, U.C, and U.U mismatches in RNA internal loops: Evidence for stable hydrogen-bonded U.U and C.C+ pairs. Biochemistry. 1991; 30:8242–8251. PubMed

He  L., Kierzek  R., SantaLucia  J., Walter  A.E., Turner  D.H.  Nearest-neighbor parameters for G.U mismatches: 5’GU3’/3’UG5’ is destabilizing in the contexts CGUG/GUGC, UGUA/AUGU, and AGUU/UUGA but stabilizing in GGUC/CUGG. Biochemistry. 1991; 30:11124–11132. PubMed

Wu  M., McDowell  J.A., Turner  D.H.  A periodic table of symmetric tandem mismatches in RNA. Biochemistry. 1995; 34:3204–3211. PubMed

Cate  J.H., Doudna  J.A.  Metal-binding sites in the major groove of a large ribozyme domain. Structure. 1996; 4:1221–1229. PubMed

Kieft  J.S., Tinoco  I.  Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt (III) hexammine. Structure. 1997; 5:713–721. PubMed

Rüdisser  S., Tinoco  I.  Solution structure of cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches. J. Mol. Biol.  2000; 295:1211–1223. PubMed

Schmitz  M., Tinoco  I.  Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA. RNA. 2000; 6:1212–1225. PubMed PMC

Vidovic  I., Nottrott  S., Hartmuth  K., Lührmann  R., Ficner  R.  Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol. Cell. 2000; 6:1331–1342. PubMed

Theimer  C.A., Finger  L.D., Trantirek  L., Feigon  J.  Mutations linked to dyskeratosis congenita cause changes in the structural equilibrium in telomerase RNA. Proc. Natl. Acad. Sci. U.S.A.  2003; 100:449–454. PubMed PMC

Correll  C.C., Freeborn  B., Moore  P.B., Steitz  T.A.  Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997; 91:705–712. PubMed

Dallas  A., Moore  P.B.  The loop E-loop D region of Escherichia coli 5S rRNA: The solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997; 5:1639–1653. PubMed

Stoldt  M., Wöhnert  J., Ohlenschläger  O., Görlach  M., Brown  L.R.  The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition. EMBO J.  1999; 18:6508–6521. PubMed PMC

Wang  Y.X., Huang  S., Draper  D.E.  Structure of a U.U pair within a conserved ribosomal RNA hairpin. Nucleic Acids Res.  1996; 24:2666–2672. PubMed PMC

Baeyens  K.J., de Bondt  H.L., Holbrook  S.R.  Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat. Struct. Biol.  1995; 2:56–62. PubMed

Lietzke  S.E., Barnes  C.L., Berglund  J.A., Kundrot  C.E.  The structure of an RNA dodecamer shows how tandem U–U base pairs increase the range of stable RNA structures and the diversity of recognition sites. Structure. 1996; 4:917–930. PubMed

Kumar  A., Park  H., Fang  P., Parkesh  R., Guo  M., Nettles  K.W., Disney  M.D.  Myotonic dystrophy type 1 RNA crystal structures reveal heterogeneous 1 × 1 nucleotide UU internal loop conformations. Biochemistry. 2011; 50:9928–9935. PubMed PMC

Rypniewski  W., Banaszak  K., Kuliński  T., Kiliszek  A.  Watson–Crick-like pairs in CCUG repeats: evidence for tautomeric shifts or protonation. RNA. 2016; 22:22–31. PubMed PMC

Sashital  D.G., Venditti  V., Angers  C.G., Cornilescu  G., Butcher  S.E.  Structure and thermodynamics of a conserved U2 snRNA domain from yeast and human. RNA. 2007; 13:328–338. PubMed PMC

Stagno  J.R., Altieri  A.S., Bubunenko  M., Tarasov  S.G., Li  J., Court  D.L., Byrd  R.A., Ji  X.  Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res.  2011; 39:7803–7815. PubMed PMC

Ohlenschläger  O., Wöhnert  J., Bucci  E., Seitz  S., Häfner  S., Ramachandran  R., Zell  R., Görlach  M.  The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure. 2004; 12:237–248. PubMed

Du  Z., Yu  J., Ulyanov  N.B., Andino  R., James  T.L.  Solution structure of a consensus stem–loop D RNA domain that plays important roles in regulating translation and replication in enteroviruses and rhinoviruses. Biochemistry. 2004; 43:11959–11972. PubMed

Goebel  S.J., Hsue  B., Dombrowski  T.F., Masters  P.S.  Characterization of the RNA components of a putative molecular switch in the 3’ untranslated region of the murine coronavirus genome. J. Virol.  2004; 78:669–682. PubMed PMC

Zhang  Y., Huang  K., Xie  D., Lau  J.Y., Shen  W., Li  P., Wang  D., Zou  Z., Shi  S., Ren  H.  et al. .  In vivo structure and dynamics of the SARS-CoV-2 RNA genome. Nat. Commun.  2021; 12:5695. PubMed PMC

Temmam  S., Vongphayloth  K., Baquero  E., Munier  S., Bonomi  M., Regnault  B., Douangboubpha  B., Karami  Y., Chrétien  D., Sanamxay  D.  et al. .  Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022; 604:330–336. PubMed

Lee  S., Lee  Y.-S., Choi  Y., Son  A., Park  Y., Lee  K.-M., Kim  J., Kim  J.-S., Kim  V.N.  The SARS-CoV-2 RNA interactome. Mol. Cell. 2021; 81:2838–2850. PubMed PMC

Schmidt  N., Lareau  C.A., Keshishian  H., Ganskih  S., Schneider  C., Hennig  T., Melanson  R., Werner  S., Wei  Y., Zimmer  M.  et al. .  The SARS-CoV-2 RNA-protein interactome in infected human cells. Nat. Microbiol.  2021; 6:339–353. PubMed PMC

Sun  L., Li  P., Ju  X., Rao  J., Huang  W., Ren  L., Zhang  S., Xiong  T., Xu  K., Zhou  X.  et al. .  In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell. 2021; 184:1865–1883. PubMed PMC

Castella  S., Bernard  R., Corno  M., Fradin  A., Larcher  J.-C.  Ilf3 and NF90 functions in RNA biology. Wiley Interdiscip. Rev. RNA. 2015; 6:243–256. PubMed

Wacker  A., Weigand  J.E., Akabayov  S.R., Altincekic  N., Bains  J.K., Banijamali  E., Binas  O., Castillo-Martinez  J., Cetiner  E., Ceylan  B.  et al. .  Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res.  2020; 48:12415–12435. PubMed PMC

Lan  T.C.T., Allan  M.F., Malsick  L.E., Woo  J.Z., Zhu  C., Zhang  F., Khandwala  S., Nyeo  S.S.Y., Sun  Y., Guo  J.U.  et al. .  Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells. Nat. Commun.  2022; 13:1128. PubMed PMC

Huston  N.C., Wan  H., Strine  M.S., Tavares  C.A., de  R., Wilen  C.B., Pyle  A.M  Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol. Cell. 2021; 81:584–598. PubMed PMC

Wishart  D.S., Bigam  C.G., Yao  J., Abildgaard  F., Dyson  H.J., Oldfield  E., Markley  J.L., Sykes  B.D.  1H, 13C and 15N chemical shift referencing in biomolecular NMR. J. Biomol. NMR. 1995; 6:135–140. PubMed

Maurer  K.  Indirect referencing of 31P and 19F NMR spectra. J. Magn. Reson. B. 1996; 113:177–178. PubMed

Keller  R.  The Computer Aided Resonance Assignment Tutorial. 2004; CANTINA Verlag.

Hwang  T.L., Shaka  A.J.  Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Reson. A. 1995; 112:275–279.

Schanda  P., Brutscher  B.  Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J. Am. Chem. Soc.  2005; 127:8014–8015. PubMed

Wöhnert  J., Görlach  M., Schwalbe  H.  Triple resonance experiments for the simultaneous correlation of H6/H5 and exchangeable protons of pyrimidine nucleotides in 13C,15N-labeled RNA applicable to larger RNA molecules. J. Biomol. NMR. 2003; 26:79–83. PubMed

Sklenár  V., Peterson  R.D., Rejante  M.R., Feigon  J.  Two- and three-dimensional HCN experiments for correlating base and sugar resonances in 15N,13C-labeled RNA oligonucleotides. J. Biomol. NMR. 1993; 3:721–727. PubMed

Sklenár  V., Dieckmann  T., Butcher  S.E., Feigon  J.  Optimization of triple-resonance HCN experiments for application to larger RNA oligonucleotides. J. Magn. Reson.  1998; 130:119–124. PubMed

Piotto  M., Saudek  V., Sklenár  V.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR. 1992; 2:661–665. PubMed

Sklenar  V., Piotto  M., Leppik  R., Saudek  V.  Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J. Magn. Reson. A. 1993; 102:241–245.

Pardi  A., Nikonowicz  E.P.  Simple procedure for resonance assignment of the sugar protons in carbon-13 labeled RNAs. J. Am. Chem. Soc.  1992; 114:9202–9203.

Kay  L.E., Xu  G.Y., Singer  A.U., Muhandiram  D.R., Formankay  J.D.  A gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J Magn Reson B. 1993; 101:333–337.

Marino  J.P., Schwalbe  H., Anklin  C., Bermel  W., Crothers  D.M., Griesinger  C.  Sequential correlation of anomeric ribose protons and intervening phosphorus in RNA oligonucleotides by a 1H, 13C, 31P triple resonance experiment: HCP-CCH-TOCSY. J. Biomol. NMR. 1995; 5:87–92. PubMed

Schanda  P., van Melckebeke  H., Brutscher  B.  Speeding up three-dimensional protein NMR experiments to a few minutes. J. Am. Chem. Soc.  2006; 128:9042–9043. PubMed

Lescop  E., Schanda  P., Brutscher  B.  A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J. Magn. Reson.  2007; 187:163–169. PubMed

Schwalbe  H., Marino  J.P., Glaser  S.J., Griesinger  C.  Measurement of H,H-coupling constants associated with .nu.1, .nu.2, and .nu.3 in uniformly 13C-labeled RNA by HCC-TOCSY-CCH-E.COSY. J. Am. Chem. Soc.  1995; 117:7251–7252.

Glaser  S.J., Schwalbe  H., Marino  J.P., Griesinger  C.  Directed TOCSY, a method for selection of directed correlations by optimal combinations of isotropic and longitudinal mixing. J Magn Reson B. 1996; 112:160–180. PubMed

Rinnenthal  J., Klinkert  B., Narberhaus  F., Schwalbe  H.  Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res.  2010; 38:3834–3847. PubMed PMC

Steinert  H.S., Rinnenthal  J., Schwalbe  H.  Individual basepair stability of DNA and RNA studied by NMR-detected solvent exchange. Biophys. J.  2012; 102:2564–2574. PubMed PMC

Varani  G., Cheong  C., Tinoco  I.  Structure of an unusually stable RNA hairpin. Biochemistry. 1991; 30:3280–3289. PubMed

Nozinovic  S., Fürtig  B., Jonker  H.R.A., Richter  C., Schwalbe  H.  High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res.  2010; 38:683–694. PubMed PMC

Koradi  R., Billeter  M., Wüthrich  K.  MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph.  1996; 14:51–55. PubMed

Mráziková  K., Mlýnský  V., Kührová  P., Pokorná  P., Kruse  H., Krepl  M., Otyepka  M., Banáš  P., Šponer  J.  UUCG RNA tetraloop as a formidable force-field challenge for MD simulations. J. Chem. Theory Comput.  2020; 16:7601–7617. PubMed

Case  D.A., Aktulga  H.M., Belfon  K., Ben-Shalom  I.Y., Brozell  S.R., Cerutti  D.S., Cheatham  T.E., Cisneros  G.A., Cruzeiro  V.W., Darden  T.A.  et al. .  AMBER 2021. 2021; San Francisco: University of California.

Zgarbová  M., Otyepka  M., Sponer  J., Mládek  A., Banáš  P., Cheatham  T.E., Jurečka  P.  Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput.  2011; 7:2886–2902. PubMed PMC

Fröhlking  T., Mlýnský  V., Janeček  M., Kührová  P., Krepl  M., Banáš  P., Šponer  J., Bussi  G.  Automatic learning of hydrogen-bond fixes in the AMBER RNA force field. J. Chem. Theory Comput.  2022; 18:4490–4502. PubMed PMC

Condon  D.E., Kennedy  S.D., Mort  B.C., Kierzek  R., Yildirim  I., Turner  D.H.  Stacking in RNA: NMR of four tetramers benchmark molecular dynamics. J. Chem. Theory Comput.  2015; 11:2729–2742. PubMed PMC

Mlýnský  V., Kührová  P., Zgarbová  M., Jurečka  P., Walter  N.G., Otyepka  M., Šponer  J., Banáš  P.  Reactive conformation of the active site in the hairpin ribozyme achieved by molecular dynamics simulations with ϵ/ζ force field reparametrizations. J. Phys. Chem. B. 2015; 119:4220–4229. PubMed

Tan  D., Piana  S., Dirks  R.M., Shaw  D.E.  RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U.S.A.  2018; 115:E1346–E1355. PubMed PMC

Aytenfisu  A.H., Spasic  A., Grossfield  A., Stern  H.A., Mathews  D.H.  Revised RNA dihedral parameters for the Amber force field improve RNA molecular dynamics. J. Chem. Theory Comput.  2017; 13:900–915. PubMed PMC

Izadi  S., Anandakrishnan  R., Onufriev  A.V.  Building water models: a different approach. J. Phys. Chem. Lett.  2014; 5:3863–3871. PubMed PMC

Joung  I.S., Cheatham  T.E.  Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC

Krepl  M., Vögele  J., Kruse  H., Duchardt-Ferner  E., Wöhnert  J., Sponer  J.  An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res.  2018; 46:6528–6543. PubMed PMC

Roe  D.R., Cheatham  T.E.  PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput.  2013; 9:3084–3095. PubMed

Humphrey  W., Dalke  A., Schulten  K.  VMD: visual molecular dynamics. J Mol Graph. 1996; 14:33–38. PubMed

Fürtig  B., Richter  C., Wöhnert  J., Schwalbe  H.  NMR spectroscopy of RNA. ChemBioChem. 2003; 4:936–962. PubMed

Shen  L., Su  Z., Yang  K., Wu  C., Becker  T., Bell-Pedersen  D., Zhang  J., Sachs  M.S.  Structure of the translating Neurospora ribosome arrested by cycloheximide. Proc. Natl. Acad. Sci. U.S.A.  2021; 118:e2111862118. PubMed PMC

Hiregange  D.-G., Rivalta  A., Bose  T., Breiner-Goldstein  E., Samiya  S., Cimicata  G., Kulakova  L., Zimmerman  E., Bashan  A., Herzberg  O.  et al. .  Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia. Nucleic Acids Res.  2022; 50:1770–1782. PubMed PMC

Nicholson  D., Salamina  M., Panek  J., Helena-Bueno  K., Brown  C.R., Hirt  R.P., Ranson  N.A., Melnikov  S.V.  Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nat. Commun.  2022; 13:591. PubMed PMC

Heus  H.A., Wijmenga  S.S., Hoppe  H., Hilbers  C.W.  The detailed structure of tandem G.A mismatched base-pair motifs in RNA duplexes is context dependent. J. Mol. Biol.  1997; 271:147–158. PubMed

Chen  G., Kierzek  R., Yildirim  I., Krugh  T.R., Turner  D.H., Kennedy  S.D.  Stacking effects on local structure in RNA: changes in the structure of tandem GA pairs when flanking GC pairs are replaced by isoG-isoC pairs. J. Phys. Chem. B. 2007; 111:6718–6727. PubMed PMC

Skrynnikov  N.R., Dahlquist  F.W., Kay  L.E.  Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J. Am. Chem. Soc.  2002; 124:12352–12360. PubMed

Fürtig  B., Schnieders  R., Richter  C., Zetzsche  H., Keyhani  S., Helmling  C., Kovacs  H., Schwalbe  H.  Direct ¹³C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA. J. Biomol. NMR. 2016; 64:207–221. PubMed

Marušič  M., Schlagnitweit  J., Petzold  K.  RNA dynamics by NMR spectroscopy. ChemBioChem. 2019; 20:2685–2710. PubMed PMC

Petrov  A.I., Zirbel  C.L., Leontis  N.B.  WebFR3D—a server for finding, aligning and analyzing recurrent RNA 3D motifs. Nucleic Acids Res.  2011; 39:W50–W55. PubMed PMC

Wong  W., Bai  X., Brown  A., Fernandez  I.S., Hanssen  E., Condron  M., Tan  Y.H., Baum  J., Scheres  S.H.W.  Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife. 2014; 3:e03080. PubMed PMC

Auffinger  P., Westhof  E.  Water and ion binding around RNA and DNA (C,G) oligomers. J. Mol. Biol.  2000; 300:1113–1131. PubMed

Wagner  G., Pardi  A., Wuethrich  K.  Hydrogen bond length and proton NMR chemical shifts in proteins. J. Am. Chem. Soc.  1983; 105:5948–5949.

Jeffrey  G.A., Yeon  Y.  The correlation between hydrogen-bond lengths and proton chemical shifts in crystals. Acta Crystallogr. B Struct. Sci.  1986; 42:410–413.

Barfield  M., Dingley  A.J., Feigon  J., Grzesiek  S.  A DFT study of the interresidue dependencies of scalar J-coupling and magnetic shielding in the hydrogen-bonding regions of a DNA triplex. J. Am. Chem. Soc.  2001; 123:4014–4022. PubMed

Herschlag  D., Pinney  M.M.  Hydrogen bonds: simple after all?. Biochemistry. 2018; 57:3338–3352. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...