BACKGROUND: MUC1 and UMOD pathogenic variants cause autosomal dominant tubulointerstitial kidney disease (ADTKD). MUC1 is expressed in kidney, nasal mucosa and respiratory tract, while UMOD is expressed only in kidney. Due to haplo-insufficiency ADTKD-MUC1 patients produce approximately 50% of normal mucin-1. METHODS: To determine whether decreased mucin-1 production was associated with an increased COVID-19 risk, we sent a survey to members of an ADTKD registry in September 2021, after the initial, severe wave of COVID-19. We linked results to previously obtained ADTKD genotype and plasma CA15-3 (mucin-1) levels and created a longitudinal registry of COVID-19 related deaths. RESULTS: Surveys were emailed to 637 individuals, with responses from 89 ADTKD-MUC1 and 132 ADTKD-UMOD individuals. 19/83 (23%) ADTKD-MUC1 survey respondents reported a prior COVID-19 infection vs. 14/125 (11%) ADTKD-UMOD respondents (odds ratio (OR) 2.35 (95%CI 1.60-3.11, P = 0.0260). Including additional familial cases reported from survey respondents, 10/41 (24%) ADTKD-MUC1 individuals died of COVID-19 vs. 1/30 (3%) with ADTKD-UMOD, with OR 9.21 (95%CI 1.22-69.32), P = 0.03. The mean plasma mucin-1 level prior to infection in 14 infected and 27 uninfected ADTKD-MUC1 individuals was 7.06 ± 4.12 vs. 10.21 ± 4.02 U/mL (P = 0.035). Over three years duration, our longitudinal registry identified 19 COVID-19 deaths in 360 ADTKD-MUC1 individuals (5%) vs. 3 deaths in 478 ADTKD-UMOD individuals (0.6%) (P = 0.0007). Multivariate logistic regression revealed the following odds ratios (95% confidence interval) for COVID-19 deaths: ADTKD-MUC1 8.4 (2.9-29.5), kidney transplant 5.5 (1.6-9.1), body mass index (kg/m2) 1.1 (1.0-1.2), age (y) 1.04 (1.0-1.1). CONCLUSIONS: Individuals with ADTKD-MUC1 are at an eight-fold increased risk of COVID-19 mortality vs. ADTKD-UMOD individuals. Haplo-insufficient production of mucin-1 may be responsible.
- MeSH
- COVID-19 * mortalita genetika MeSH
- dospělí MeSH
- intersticiální nefritida genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- mucin 1 * krev MeSH
- mutace * MeSH
- registrace MeSH
- SARS-CoV-2 genetika MeSH
- senioři MeSH
- uromodulin MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
- MeSH
- COVID-19 virologie MeSH
- koronavirová RNA-replikasa * genetika metabolismus chemie MeSH
- lidé MeSH
- mutace * MeSH
- RNA-dependentní RNA-polymerasa genetika chemie metabolismus MeSH
- SARS-CoV-2 * genetika enzymologie MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- virové nestrukturální proteiny * genetika chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This study presents a graphene field-effect transistor (gFET) biosensor with dual detection capabilities for SARS-CoV-2: one RNA detection assay to confirm viral positivity and the other for nucleocapsid (N-)protein detection as a proxy for infectiousness of the patient. This technology can be rapidly adapted to emerging infectious diseases, making an essential tool to contain future pandemics. To detect viral RNA, the highly conserved E-gene of the virus was targeted, allowing for the determination of SARS-CoV-2 presence or absence using nasopharyngeal swab samples. For N-protein detection, specific antibodies were used. Tested on 213 clinical nasopharyngeal samples, the gFET biosensor showed good correlation with RT-PCR cycle threshold values, proving its high sensitivity in detecting SARS-CoV-2 RNA. Specificity was confirmed using 21 pre-pandemic samples positive for other respiratory viruses. The gFET biosensor had a limit of detection (LOD) for N-protein of 0.9 pM, establishing a foundation for the development of a sensitive tool for monitoring active viral infection. Results of gFET based N-protein detection corresponded to the results of virus culture in all 16 available clinical samples and thus it also proved its capability to serve as a proxy for infectivity. Overall, these findings support the potential of the gFET biosensor as a point-of-care device for rapid diagnosis of SARS-CoV-2 infection and indirect assessment of infectiousness in patients, providing additional information for clinical and public health decision-making.
- MeSH
- biosenzitivní techniky * přístrojové vybavení metody MeSH
- COVID-19 * diagnóza virologie MeSH
- design vybavení MeSH
- elektronické tranzistory MeSH
- fosfoproteiny MeSH
- grafit * chemie MeSH
- koronavirové nukleokapsidové proteiny izolace a purifikace MeSH
- lidé MeSH
- limita detekce MeSH
- nazofarynx virologie MeSH
- RNA virová * izolace a purifikace analýza MeSH
- SARS-CoV-2 * izolace a purifikace genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In middle to late 2023, a sublineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron XBB, EG.5.1 (a progeny of XBB.1.9.2), is spreading rapidly around the world. We performed multiscale investigations, including phylogenetic analysis, epidemic dynamics modeling, infection experiments using pseudoviruses, clinical isolates, and recombinant viruses in cell cultures and experimental animals, and the use of human sera and antiviral compounds, to reveal the virological features of the newly emerging EG.5.1 variant. Our phylogenetic analysis and epidemic dynamics modeling suggested that two hallmark substitutions of EG.5.1, S:F456L and ORF9b:I5T are critical to its increased viral fitness. Experimental investigations on the growth kinetics, sensitivity to clinically available antivirals, fusogenicity, and pathogenicity of EG.5.1 suggested that the virological features of EG.5.1 are comparable to those of XBB.1.5. However, cryo-electron microscopy revealed structural differences between the spike proteins of EG.5.1 and XBB.1.5. We further assessed the impact of ORF9b:I5T on viral features, but it was almost negligible in our experimental setup. Our multiscale investigations provide knowledge for understanding the evolutionary traits of newly emerging pathogenic viruses, including EG.5.1, in the human population.
- MeSH
- antivirové látky farmakologie MeSH
- Cercopithecus aethiops MeSH
- COVID-19 * virologie MeSH
- elektronová kryomikroskopie MeSH
- fylogeneze * MeSH
- glykoprotein S, koronavirus * genetika chemie MeSH
- lidé MeSH
- myši MeSH
- SARS-CoV-2 * genetika MeSH
- Vero buňky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.
- MeSH
- 3' nepřekládaná oblast * MeSH
- chybné párování bází * MeSH
- COVID-19 virologie MeSH
- genom virový MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- nukleotidové motivy * MeSH
- párování bází MeSH
- Plasmodium falciparum genetika MeSH
- RNA virová * chemie genetika MeSH
- SARS-CoV-2 * genetika chemie MeSH
- simulace molekulární dynamiky MeSH
- vodíková vazba MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
It is so far unclear how the COVID-19 winter waves started and what should be done to prevent possible future waves. In this study, we deciphered the dynamic course of a winter wave in 2021 in Saxony, a state in Eastern Germany neighbouring the Czech Republic and Poland. The study was carried out through the integration of multiple virus genomic epidemiology approaches to track transmission chains, identify emerging variants and investigate dynamic changes in transmission clusters. For identified local variants of interest, functional evaluations were performed. Multiple long-lasting community transmission clusters have been identified acting as driving force for the winter wave 2021. Analysis of the dynamic courses of two representative clusters indicated a similar transmission pattern. However, the transmission cluster caused by a locally occurring new Delta variant AY.36.1 showed a distinct transmission pattern, and functional analyses revealed a replication advantage of it. This study indicated that long-lasting community transmission clusters starting since early autumn caused by imported or locally occurring variants all contributed to the development of the 2021 winter wave. The information we achieved might help future pandemic prevention.
- MeSH
- COVID-19 * epidemiologie přenos virologie MeSH
- lidé MeSH
- roční období * MeSH
- SARS-CoV-2 * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Německo MeSH
Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.
- MeSH
- adenokarcinom plic * genetika virologie patologie metabolismus MeSH
- Caco-2 buňky MeSH
- COVID-19 * genetika virologie metabolismus MeSH
- lidé MeSH
- messenger RNA * genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory plic genetika virologie patologie metabolismus MeSH
- receptory spřažené s G-proteiny * metabolismus genetika MeSH
- SARS-CoV-2 * genetika fyziologie metabolismus MeSH
- upregulace * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Following the COVID-19 infection, the sternum dislocation and wound dehiscence resulted in an infection complicating the recovery of an immunosuppressed patient after bilateral lung transplantation. Anaerobic culture (96 h) of milky cloudy wound secretion resulted in the growth of pinpoint haemolytic colonies identified as Metamycoplasma hominis (formerly Mycoplasma hominis). The search for the endogenous source of the infection found the bacterium exclusively in the patient's sputum, making a possible link to donor lung M. hominis colonization. Unfortunately, the donor samples were no longer available. The wound infection was successfully treated with 17 days of clindamycin despite the continuous PCR detection of M. hominis in the sputum after the end of the treatment.
- MeSH
- antibakteriální látky terapeutické užití MeSH
- COVID-19 diagnóza MeSH
- hostitel s imunodeficiencí MeSH
- infekce chirurgické rány * mikrobiologie farmakoterapie diagnóza MeSH
- klindamycin terapeutické užití MeSH
- lidé středního věku MeSH
- lidé MeSH
- Mycoplasma hominis * genetika izolace a purifikace MeSH
- mykoplazmové infekce * mikrobiologie diagnóza farmakoterapie MeSH
- SARS-CoV-2 genetika izolace a purifikace MeSH
- sputum mikrobiologie MeSH
- transplantace plic * škodlivé účinky MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
We conducted a multicentre hospital-based test-negative case-control study to measure the effectiveness of adapted bivalent COVID-19 mRNA vaccines against PCR-confirmed SARS-CoV-2 infection during the Omicron XBB lineage-predominant period in patients aged ≥ 60 years with severe acute respiratory infection from five countries in Europe. Bivalent vaccines provided short-term additional protection compared with those vaccinated > 6 months before the campaign: from 80% (95% CI: 50 to 94) for 14-89 days post-vaccination, 15% (95% CI: -12 to 35) at 90-179 days, and lower to no effect thereafter.
- MeSH
- COVID-19 * prevence a kontrola MeSH
- hospitalizace MeSH
- lidé MeSH
- messenger RNA MeSH
- SARS-CoV-2 genetika MeSH
- studie případů a kontrol MeSH
- vakcíny proti COVID-19 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Testing of pooled samples is an effective strategy for increasing testing capacity while saving resources and time. This study aimed to validate pooled testing and gather real-life data on its use for Covid-19 surveillance with a gargle lavage (GL) self-sampling strategy. METHODS: Two-stage pooled testing with pools of 6 and 12 samples was used for preventive testing of an asymptomatic population and Covid-19 surveillance in Czech schools. Both GL and nasopharyngeal swabs were used for sampling. RESULTS: In total, 61,111 samples were tested. The use of pooled testing for large-scale Covid-19 surveillance reduced consumable costs by almost 75% and increased testing capacity up to 3.8-fold compared to standard methods. RT-PCR experiments revealed a minimal loss of sensitivity (0-2.2%) when using pooled samples, enabling the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes with Ct values >35. The minor loss of sensitivity was counterbalanced by a significantly increased throughput and the ability to substantially increase testing frequencies. CONCLUSIONS: Pooled testing is considerably more cost-effective and less time-consuming than standard testing for large-scale Covid-19 surveillance even when the prevalence of SARS-CoV-2 is fluctuating. Gargle lavage self-sampling is a non-invasive technique suitable for sample collection without a healthcare worker's assistance.
- MeSH
- COVID-19 * diagnóza epidemiologie MeSH
- lidé MeSH
- nazofarynx * virologie MeSH
- odběr biologického vzorku * metody MeSH
- SARS-CoV-2 * genetika izolace a purifikace MeSH
- senzitivita a specificita MeSH
- testování na COVID-19 průkazem nukleové kyseliny metody MeSH
- testování na COVID-19 metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH