-
Je něco špatně v tomto záznamu ?
Biochemical characterization of naturally occurring mutations in SARS-CoV-2 RNA-dependent RNA polymerase
M. Danda, A. Klimešová, K. Kušková, A. Dostálková, A. Pagáčová, J. Prchal, M. Kapisheva, T. Ruml, M. Rumlová
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5103
National Institute of Virology and Bacteriology
22-17118S
European Union - Next Generation EU and by Czech Science Foundation
NLK
Free Medical Journals
od 1992 do Před 1 rokem
PubMed Central
od 1992 do Před 1 rokem
Europe PubMed Central
od 1992 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2010-01-01 do Před 1 rokem
Wiley Free Content
od 1996 do Před 1 rokem
PubMed
39145418
DOI
10.1002/pro.5103
Knihovny.cz E-zdroje
- MeSH
- COVID-19 virologie MeSH
- koronavirová RNA-replikasa * genetika metabolismus chemie MeSH
- lidé MeSH
- mutace * MeSH
- RNA-dependentní RNA-polymerasa genetika chemie metabolismus MeSH
- SARS-CoV-2 * genetika enzymologie MeSH
- stabilita proteinů MeSH
- vazba proteinů MeSH
- virové nestrukturální proteiny * genetika chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc24019061
- 003
- CZ-PrNML
- 005
- 20241024111605.0
- 007
- ta
- 008
- 241015s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/pro.5103 $2 doi
- 035 __
- $a (PubMed)39145418
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Danda, Matěj $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic $1 https://orcid.org/000000020828412X
- 245 10
- $a Biochemical characterization of naturally occurring mutations in SARS-CoV-2 RNA-dependent RNA polymerase / $c M. Danda, A. Klimešová, K. Kušková, A. Dostálková, A. Pagáčová, J. Prchal, M. Kapisheva, T. Ruml, M. Rumlová
- 520 9_
- $a Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
- 650 12
- $a SARS-CoV-2 $x genetika $x enzymologie $7 D000086402
- 650 12
- $a koronavirová RNA-replikasa $x genetika $x metabolismus $x chemie $7 D000086422
- 650 12
- $a mutace $7 D009154
- 650 12
- $a virové nestrukturální proteiny $x genetika $x chemie $x metabolismus $7 D017361
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a COVID-19 $x virologie $7 D000086382
- 650 _2
- $a RNA-dependentní RNA-polymerasa $x genetika $x chemie $x metabolismus $7 D012324
- 650 _2
- $a stabilita proteinů $7 D055550
- 650 _2
- $a vazba proteinů $7 D011485
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Klimešová, Anna $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
- 700 1_
- $a Kušková, Klára $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
- 700 1_
- $a Dostálková, Alžběta $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
- 700 1_
- $a Pagáčová, Aneta $u Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
- 700 1_
- $a Prchal, Jan $u Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
- 700 1_
- $a Kapisheva, Marina $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
- 700 1_
- $a Ruml, Tomáš $u Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
- 700 1_
- $a Rumlová, Michaela $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic $1 https://orcid.org/0000000256458227 $7 ola20040226003
- 773 0_
- $w MED00008270 $t Protein science : a publication of the Protein Society $x 1469-896X $g Roč. 33, č. 9 (2024), s. e5103
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39145418 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20241015 $b ABA008
- 991 __
- $a 20241024111559 $b ABA008
- 999 __
- $a ok $b bmc $g 2201717 $s 1231034
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 33 $c 9 $d e5103 $e - $i 1469-896X $m Protein science : a publication of the Protein Society $n Protein Sci $x MED00008270
- GRA __
- $a LX22NPO5103 $p National Institute of Virology and Bacteriology
- GRA __
- $a 22-17118S $p European Union - Next Generation EU and by Czech Science Foundation
- LZP __
- $a Pubmed-20241015