• Je něco špatně v tomto záznamu ?

Biochemical characterization of naturally occurring mutations in SARS-CoV-2 RNA-dependent RNA polymerase

M. Danda, A. Klimešová, K. Kušková, A. Dostálková, A. Pagáčová, J. Prchal, M. Kapisheva, T. Ruml, M. Rumlová

. 2024 ; 33 (9) : e5103. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc24019061

Grantová podpora
LX22NPO5103 National Institute of Virology and Bacteriology
22-17118S European Union - Next Generation EU and by Czech Science Foundation

E-zdroje Online Plný text

NLK Free Medical Journals od 1992 do Před 1 rokem
PubMed Central od 1992 do Před 1 rokem
Europe PubMed Central od 1992 do Před 1 rokem
Medline Complete (EBSCOhost) od 2010-01-01 do Před 1 rokem
Wiley Free Content od 1996 do Před 1 rokem

Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc24019061
003      
CZ-PrNML
005      
20241024111605.0
007      
ta
008      
241015s2024 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/pro.5103 $2 doi
035    __
$a (PubMed)39145418
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Danda, Matěj $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic $1 https://orcid.org/000000020828412X
245    10
$a Biochemical characterization of naturally occurring mutations in SARS-CoV-2 RNA-dependent RNA polymerase / $c M. Danda, A. Klimešová, K. Kušková, A. Dostálková, A. Pagáčová, J. Prchal, M. Kapisheva, T. Ruml, M. Rumlová
520    9_
$a Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
650    12
$a SARS-CoV-2 $x genetika $x enzymologie $7 D000086402
650    12
$a koronavirová RNA-replikasa $x genetika $x metabolismus $x chemie $7 D000086422
650    12
$a mutace $7 D009154
650    12
$a virové nestrukturální proteiny $x genetika $x chemie $x metabolismus $7 D017361
650    _2
$a lidé $7 D006801
650    _2
$a COVID-19 $x virologie $7 D000086382
650    _2
$a RNA-dependentní RNA-polymerasa $x genetika $x chemie $x metabolismus $7 D012324
650    _2
$a stabilita proteinů $7 D055550
650    _2
$a vazba proteinů $7 D011485
655    _2
$a časopisecké články $7 D016428
700    1_
$a Klimešová, Anna $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
700    1_
$a Kušková, Klára $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
700    1_
$a Dostálková, Alžběta $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
700    1_
$a Pagáčová, Aneta $u Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
700    1_
$a Prchal, Jan $u Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
700    1_
$a Kapisheva, Marina $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
700    1_
$a Ruml, Tomáš $u Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
700    1_
$a Rumlová, Michaela $u Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic $1 https://orcid.org/0000000256458227 $7 ola20040226003
773    0_
$w MED00008270 $t Protein science : a publication of the Protein Society $x 1469-896X $g Roč. 33, č. 9 (2024), s. e5103
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39145418 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20241015 $b ABA008
991    __
$a 20241024111559 $b ABA008
999    __
$a ok $b bmc $g 2201717 $s 1231034
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 33 $c 9 $d e5103 $e - $i 1469-896X $m Protein science : a publication of the Protein Society $n Protein Sci $x MED00008270
GRA    __
$a LX22NPO5103 $p National Institute of Virology and Bacteriology
GRA    __
$a 22-17118S $p European Union - Next Generation EU and by Czech Science Foundation
LZP    __
$a Pubmed-20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...