An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch

. 2018 Jul 27 ; 46 (13) : 6528-6543.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29893898

The neomycin sensing riboswitch is the smallest biologically functional RNA riboswitch, forming a hairpin capped with a U-turn loop-a well-known RNA motif containing a conserved uracil. It was shown previously that a U→C substitution of the eponymous conserved uracil does not alter the riboswitch structure due to C protonation at N3. Furthermore, cytosine is evolutionary permitted to replace uracil in other U-turns. Here, we use molecular dynamics simulations to study the molecular basis of this substitution in the neomycin sensing riboswitch and show that a structure-stabilizing monovalent cation-binding site in the wild-type RNA is the main reason for its negligible structural effect. We then use NMR spectroscopy to confirm the existence of this cation-binding site and to demonstrate its effects on RNA stability. Lastly, using quantum chemical calculations, we show that the cation-binding site is altering the electronic environment of the wild-type U-turn so that it is more similar to the cytosine mutant. The study reveals an amazingly complex and delicate interplay between various energy contributions shaping up the 3D structure and evolution of nucleic acids.

Zobrazit více v PubMed

Weigand J.E., Sanchez M., Gunnesch E.-B., Zeiher S., Schroeder R., Suess B.. Screening for engineered neomycin riboswitches that control translation initiation. RNA. 2008; 14:89–97. PubMed PMC

Duchardt-Ferner E., Weigand J.E., Ohlenschläger O., Schmidtke S.R., Suess B., Wöhnert J.. Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew. Chem. Int. Ed. 2010; 49:6216–6219. PubMed

Gutell R.R., Cannone J.J., Konings D., Gautheret D.. Predicting U-turns in ribosomal RNA with comparative sequence analysis. J. Mol. Biol. 2000; 300:791–803. PubMed

Auffinger P., Westhof E.. An extended structural signature for the tRNA anticodon loop. RNA. 2001; 7:334–341. PubMed PMC

Leontis N.B., Westhof E.. Geometric nomenclature and classification of RNA base Pairs. RNA. 2001; 7:499–512. PubMed PMC

Leontis N.B., Stombaugh J., Westhof E.. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002; 30:3497–3531. PubMed PMC

Zirbel C.L., Sponer J.E., Sponer J., Stombaugh J., Leontis N.B.. Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res. 2009; 37:4898–4918. PubMed PMC

Gottstein-Schmidtke S.R., Duchardt-Ferner E., Groher F., Weigand J.E., Gottstein D., Suess B., Wöhnert J.. Building a stable RNA U-turn with a protonated cytidine. RNA. 2014; 20:1163–1172. PubMed PMC

Hiller D.A., Strobel S.A.. The chemical versatility of RNA. Philos. Trans. R. Soc. B. 2011; 366:2929–2935. PubMed PMC

Wilcox J.L., Bevilacqua P.C.. pKa shifting in double-Stranded RNA is highly dependent upon nearest neighbors and bulge positioning. Biochemistry. 2013; 52:7470–7476. PubMed

Wilcox J.L., Bevilacqua P.C.. A simple fluorescence method for pKa determination in RNA and DNA reveals highly shifted pKa's. J. Am. Chem. Soc. 2013; 135:7390–7393. PubMed

Wolter A.C., Weickhmann A.K., Nasiri A.H., Hantke K., Ohlenschläger O., Wunderlich C.H., Kreutz C., Duchardt-Ferner E., Wöhnert J.. A stably protonated adenine nucleotide with a highly shifted pKa value stabilizes the tertiary structure of a GTP-Binding RNA aptamer. Angew. Chem. Int. Ed. 2017; 56:401–404. PubMed

Duchardt-Ferner E., Wöhnert J.. NMR experiments for the rapid identification of P = O···H–X type hydrogen bonds in nucleic acids. J. Biomol. NMR. 2017; 69:101–110. PubMed

Šponer J., Bussi G., Krepl M., Banáš P., Bottaro S., Cunha R.A., Gil-Ley A., Pinamonti G., Poblete S., Jurečka P. et al. . RNA structural dynamics as captured by molecular Simulations: a comprehensive overview. Chem. Rev. 2018; 118:4177–4338. PubMed PMC

Auffinger P., Westhof E.. H-bond stability in the tRNA(Asp) anticodon hairpin: 3 ns of multiple molecular dynamics simulations. Biophys. J. 1996; 71:940–954. PubMed PMC

Auffinger P., Westhof E.. RNA Hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. J. Mol. Biol. 1997; 269:326–341. PubMed

Sefcikova J., Krasovska M.V., Šponer J., Walter N.G.. The genomic HDV ribozyme utilizes a previously unnoticed U-turn motif to accomplish fast Site-specific catalysis. Nucleic Acids Res. 2007; 35:1933–1946. PubMed PMC

Zhuang Z., Jaeger L., Shea J.E.. Probing the structural hierarchy and energy landscape of an RNA T-loop hairpin. Nucleic Acids Res. 2007; 35:6995–7002. PubMed PMC

Bergonzo C., Hall K.B., Cheatham T.E.. Stem-Loop V of varkud satellite RNA exhibits characteristics of the Mg2+ bound structure in the presence of monovalent ions. J. Phys. Chem. B. 2015; 119:12355–12364. PubMed PMC

Bergonzo C., Cheatham T.E.. Mg2+ binding promotes SLV as a scaffold in varkud satellite ribozyme SLI-SLV kissing loop junction. Biophys. J. 2017; 113:313–320. PubMed PMC

Zgarbova M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T.E., Jurecka P.. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011; 7:2886–2902. PubMed PMC

Chawla M., Credendino R., Poater A., Oliva R., Cavallo L.. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site. J. Am. Chem. Soc. 2015; 137:299–306. PubMed

Chawla M., Abdel-Azeim S., Oliva R., Cavallo L.. Higher order structural effects stabilizing the reverse Watson–Crick guanine-cytosine base pair in functional RNAs. Nucleic Acids Res. 2014; 42:714–726. PubMed PMC

Banáš P., Jurečka P., Walter N.G., Šponer J., Otyepka M.. Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Methods. 2009; 49:202–216. PubMed PMC

Mlynsky V., Walter N.G., Sponer J., Otyepka M., Banas P.. The role of an active site Mg2+ in HDV ribozyme self-cleavage: insights from QM/MM calculations. Phys. Chem. Chem. Phys. 2015; 17:670–679. PubMed PMC

Gkionis K., Kruse H., Šponer J.. Derivation of reliable geometries in QM calculations of DNA structures: explicit solvent QM/MM and restrained implicit solvent QM optimizations of G-Quadruplexes. J. Chem. Theory Comput. 2016; 12:2000–2016. PubMed

Mlýnský V., Bussi G.. Understanding In-line probing experiments by modeling cleavage of nonreactive RNA nucleotides. RNA. 2017; 23:712–720. PubMed PMC

Radak B.K., Harris M.E., York D.M.. Molecular simulations of RNA 2′-O-transesterification reaction models in solution. J. Phys. Chem. B. 2013; 117:94–103. PubMed PMC

Wong K.Y., Lee T.S., York D.M.. Active participation of Mg Ion in the reaction coordinate of RNA Self-cleavage catalyzed by the hammerhead ribozyme. J. Chem. Theory Comput. 2011; 7:1–3. PubMed PMC

Ganguly A., Thaplyal P., Rosta E., Bevilacqua P.C., Hammes-Schiffer S.. Quantum Mechanical/Molecular mechanical free energy simulations of the Self-Cleavage reaction in the hepatitis delta virus ribozyme. J. Am. Chem. Soc. 2014; 136:1483–1496. PubMed PMC

Zhang S.X., Ganguly A., Goyal P., Bingaman J.L., Bevilacqua P.C., Hammes-Schiffer S.. Role of the active site guanine in the glmS ribozyme self-Cleavage Mechanism: Quantum Mechanical/Molecular mechanical free energy simulations. J. Am. Chem. Soc. 2015; 137:784–798. PubMed PMC

Duchardt-Ferner E., Gottstein-Schmidtke S.R., Weigand J.E., Ohlenschläger O., Wurm J.-P., Hammann C., Suess B., Wöhnert J.. What a difference an OH makes: Conformational dynamics as the basis for the ligand specificity of the Neomycin-Sensing riboswitch. Angew. Chem. Int. Ed. 2016; 55:1527–1530. PubMed

Banáš P., Walter N.G., Šponer J., Otyepka M.. Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics. J. Phys. Chem. B. 2010; 114:8701–8712. PubMed PMC

Mlynsky V., Banas P., Hollas D., Reblova K., Walter N.G., Sponer J., Otyepka M.. Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H(+) forms are most consistent with crystal structures of hairpin ribozyme. J. Phys. Chem. B. 2010; 114:6642–6652. PubMed PMC

Veeraraghavan N., Ganguly A., Golden B.L., Bevilacqua P.C., Hammes-Schiffer S.. Mechanistic strategies in the HDV Ribozyme: chelated and diffuse metal ion interactions and active site protonation. J. Phys. Chem. B. 2011; 115:8346–8357. PubMed PMC

Krepl M., Reblova K., Koca J., Sponer J.. Bioinformatics and molecular dynamics simulation study of L1 stalk Non-Canonical rRNA Elements: Kink-Turns, loops, and tetraloops. J. Phys. Chem. B. 2013; 117:5540–5555. PubMed

Venditti V., Clos Ii L., Niccolai N., Butcher S.E.. Minimum-Energy path for a U6 RNA conformational change involving protonation, base-pair rearrangement and base flipping. J. Mol. Biol. 2009; 391:894–905. PubMed PMC

Krepl M., Cléry A., Blatter M., Allain F.H.T., Sponer J.. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 2016; 44:6452–6470. PubMed PMC

Krepl M., Blatter M., Cléry A., Damberger F.F., Allain F.H.T., Sponer J.. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Res. 2017; 45:8046–8063. PubMed PMC

Case D.A., R.M.B., Botello-Smith W., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W. et al. . 2016; San Francisco: University of California.

Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A.. A 2nd generation Force-Field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 1995; 117:5179–5197.

Perez A., Marchan I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M.. Refinenement of the AMBER force field for nucleic Acids: Improving the description of Alpha/Gamma conformers. Biophys. J. 2007; 92:3817–3829. PubMed PMC

Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A.. Development and testing of a general amber force field. J. Comput. Chem. 2004; 25:1157–1174. PubMed

Jakalian A., Bush B.L., Jack D.B., Bayly C.I.. Fast, efficient generation of high-quality atomic charges. AM1-BCC Model: I. Method. J. Comput. Chem. 2000; 21:132–146. PubMed

Jakalian A., Jack D.B., Bayly C.I.. Fast, efficient generation of High-quality atomic charges. AM1-BCC Model: II. Parameterization and validation. J. Comput. Chem. 2002; 23:1623–1641. PubMed

Berendsen H.J.C., Grigera J.R., Straatsma T.P.. The missing term in effective pair potentials. J. Phys. Chem. 1987; 91:6269–6271.

Joung I.S., Cheatham T.E.. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC

Götz A.W., Clark M.A., Walker R.C.. An extensible interface for QM/MM molecular dynamics simulations with AMBER. J. Comput. Chem. 2014; 35:95–108. PubMed PMC

Ahlrichs R., Bar M., Haser M., Horn H., Kolmel C.. Electronic-Structure calculations on workstation Computers - the program system Turbomole. Chem. Phys. Lett. 1989; 162:165–169.

Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E.. Climbing the density functional ladder: nonempirical Meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003; 91:146401. PubMed

Weigend F., Ahlrichs R.. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005; 7:3297–3305. PubMed

Kruse H., Mladek A., Gkionis K., Hansen A., Grimme S., Sponer J.. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J. Chem. Theory Comput. 2015; 11:4972–4991. PubMed

Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011; 32:1456–1465. PubMed

Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J.. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994; 98:11623–11627.

Roe D.R., Cheatham T.E.. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013; 9:3084–3095. PubMed

Humphrey W., Dalke A., Schulten K.. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14:33–38. PubMed

Merritt E.A., Bacon D.J.. Carter C.W., Sweet R.M.. Raster3D: Photorealistic Molecular Graphics. Macromolecular Crystallography, Pt B. 1997; 277:San Diego: Elsevier Academic Press Inc; 505–524. PubMed

Duchardt-Ferner E., Ferner J., Wöhnert J.. Rapid identification of noncanonical RNA structure elements by direct detection of OH…O.P, NH…O.P, and NH2…O.P hydrogen bonds in solution NMR spectroscopy. Angew. Chem. Int. Ed. 2011; 50:7927–7930. PubMed

Steinbrecher T., Latzer J., Case D.A.. Revised AMBER parameters for bioorganic phosphates. J. Chem. Theory Comput. 2012; 8:4405–4412. PubMed PMC

Izadi S., Anandakrishnan R., Onufriev A.V.. Building water models: a different approach. J. Phys. Chem. Lett. 2014; 5:3863–3871. PubMed PMC

Kuhrova P., Best R., Bottaro S., Bussi G., Sponer J., Otyepka M., Banas P.. Computer folding of RNA tetraloops: identification of key force field deficiencies. J. Chem. Theory Comput. 2016; 12:4534–4548. PubMed PMC

Puglisi E.V., Puglisi J.D.. HIV-1 A-rich RNA loop mimics the tRNA anticodon structure. Nat. Struct. Mol. Biol. 1998; 5:1033–1036. PubMed

Ganichkin O.M., Anedchenko E.A., Wahl M.C.. Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse. PLoS One. 2011; 6:e20032. PubMed PMC

D’Ascenzo L., Leonarski F., Vicens Q., Auffinger P.. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops. RNA. 2017; 23:259–269. PubMed PMC

Chawla M., Chermak E., Zhang Q., Bujnicki J.M., Oliva R., Cavallo L.. Occurrence and stability of lone pair–π stacking interactions between ribose and nucleobases in functional RNAs. Nucleic Acids Res. 2017; 45:11019–11032. PubMed PMC

D’Ascenzo L., Leonarski F., Vicens Q., Auffinger P.. ‘Z-DNA like’ fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response. Nucleic Acids Res. 2016; 44:5944–5956. PubMed PMC

Sponer J., Sponer J.E., Mladek A., Jurecka P., Banas P., Otyepka M.. Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment. Biopolymers. 2013; 99:978–988. PubMed

Wheeler S.E., Bloom J.W.G.. Toward a more complete understanding of noncovalent interactions involving aromatic rings. J. Phys. Chem. A. 2014; 118:6133–6147. PubMed

Campbell D.O., Bouchard P., Desjardins G., Legault P.. NMR structure of varkud satellite ribozyme stem−loop V in the presence of magnesium ions and localization of metal-binding sites. Biochemistry. 2006; 45:10591–10605. PubMed

Noeske J., Schwalbe H., Wöhnert J.. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain. Nucleic Acids Res. 2007; 35:5262–5273. PubMed PMC

Bertini I., Luchinat C.. Nmr of Paramagnetic Molecules in Biological Systems. 1986; Benjamin/Cummings Publishing Company.

Hobza P., Šponer J., Cubero E., Orozco M., Luque F.J.. C−H···O contacts in the adenine···Uuracil Watson−Crick and uracil···uracil nucleic acid base pairs: nonempirical ab initio study with inclusion of electron correlation effects. J. Phys. Chem. B. 2000; 104:6286–6292.

Pokorna P., Krepl M., Kruse H., Sponer J.. MD and QM/MM study of the quaternary HutP homohexamer complex with mRNA, L-histidine ligand and Mg2+. J. Chem. Theory Comput. 2017; 13:5658–5670. PubMed

Hawkins G.D., Cramer C.J., Truhlar D.G.. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J. Phys. Chem. 1996; 100:19824–19839.

Klamt A., Schuurmann G.. Cosmo - A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 1993; 2:799–805.

Kimsey I.J., Petzold K., Sathyamoorthy B., Stein Z.W., Al-Hashimi H.M.. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Nature. 2015; 519:315–320. PubMed PMC

Yildirim I., Turner D.H.. RNA challenges for computational chemists. Biochemistry. 2005; 44:13225–13234. PubMed PMC

Siegfried N.A., Kierzek R., Bevilacqua P.C.. Role of unsatisfied hydrogen bond acceptors in RNA energetics and specificity. J. Am. Chem. Soc. 2010; 132:5342–5344. PubMed

Nikolova E.N., Stull F., Al-Hashimi H.M.. Guanine to inosine substitution leads to large increases in the population of a transient G·C hoogsteen base pair. Biochemistry. 2014; 53:7145–7147. PubMed PMC

Sarver M., Zirbel C.L., Stombaugh J., Mokdad A., Leontis N.B.. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J. Math. Biol. 2008; 56:215–252. PubMed PMC

Kurata S., Weixlbaumer A., Ohtsuki T., Shimazaki T., Wada T., Kirino Y., Takai K., Watanabe K., Ramakrishnan V., Suzuki T.. Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U·G wobble pairing during decoding. J. Biol. Chem. 2008; 283:18801–18811. PubMed

Cilley C.D., Williamson J.R.. Structural mimicry in the phage [phis]21 N peptide–boxB RNA complex. RNA. 2003; 9:663–676. PubMed PMC

Ogle J.M., Brodersen D.E., Clemons W.M., Tarry M.J., Carter A.P., Ramakrishnan V.. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001; 292:897–902. PubMed

Wlodawer A., Minor W., Dauter Z., Jaskolski M.. Protein crystallography for Non-crystallographers, or how to get the best (but not more) from published macromolecular structures. Febs J. 2008; 275:1–21. PubMed PMC

Pan F., Roland C., Sagui C.. Ion distributions around Left- and Right-handed DNA and RNA Duplexes: a comparative study. Nucleic Acids Res. 2014; 42:13981–13996. PubMed PMC

Mlynsky V., Kuhrova P., Zgarbova M., Jurecka P., Walter N.G., Otyepka M., Sponer J., Banas P.. Reactive conformation of the active site in the hairpin ribozyme achieved by molecular dynamics simulations with epsilon/zeta force field reparametrizations. J. Phys. Chem. B. 2015; 119:4220–4229. PubMed

Condon D.E., Kennedy S.D., Mort B.C., Kierzek R., Yildirim I., Turner D.H.. Stacking in RNA: NMR of four tetramers benchmark molecular dynamics. J. Chem. Theory Comput. 2015; 11:2729–2742. PubMed PMC

Bergonzo C., Cheatham T.E.. Improved force field parameters lead to a better description of RNA structure. J. Chem. Theory Comput. 2015; 11:3969–3972. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

How Binding Site Flexibility Promotes RNA Scanning by TbRGG2 RRM: A Molecular Dynamics Simulation Study

. 2025 Jan 27 ; 65 (2) : 896-907. [epub] 20250113

Transcriptome-scale analysis uncovers conserved residues in the hydrophobic core of the bacterial RNA chaperone Hfq required for small regulatory RNA stability

. 2025 Jan 24 ; 53 (3) : .

Comprehensive Assessment of Force-Field Performance in Molecular Dynamics Simulations of DNA/RNA Hybrid Duplexes

. 2024 Aug 13 ; 20 (15) : 6917-6929. [epub] 20240716

Structure of an internal loop motif with three consecutive U•U mismatches from stem-loop 1 in the 3'-UTR of the SARS-CoV-2 genomic RNA

. 2024 Jun 24 ; 52 (11) : 6687-6706.

Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA

. 2023 Jun ; 29 (6) : 790-807. [epub] 20230303

Sensitivity of the RNA Structure to Ion Conditions as Probed by Molecular Dynamics Simulations of Common Canonical RNA Duplexes

. 2023 Apr 10 ; 63 (7) : 2133-2146. [epub] 20230329

Spontaneous binding of single-stranded RNAs to RRM proteins visualized by unbiased atomistic simulations with a rescaled RNA force field

. 2022 Nov 28 ; 50 (21) : 12480-12496.

The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly

. 2022 Jun 03 ; 13 (1) : 3112. [epub] 20220603

MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes

. 2021 Jan-Jun ; 296 () : 100656. [epub] 20210420

Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing

. 2021 Jan 18 ; 12 (1) : 428. [epub] 20210118

Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions

. 2019 May 14 ; 15 (5) : 3288-3305. [epub] 20190402

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...