An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29893898
PubMed Central
PMC6061696
DOI
10.1093/nar/gky490
PII: 5035167
Knihovny.cz E-zdroje
- MeSH
- cytosin chemie MeSH
- draslík MeSH
- hořčík MeSH
- ionty chemie MeSH
- kationty chemie MeSH
- konformace nukleové kyseliny MeSH
- ligandy MeSH
- mutace MeSH
- neomycin MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- párování bází MeSH
- riboswitch * MeSH
- simulace molekulární dynamiky MeSH
- uracil chemie MeSH
- vazebná místa MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cytosin MeSH
- draslík MeSH
- hořčík MeSH
- ionty MeSH
- kationty MeSH
- ligandy MeSH
- neomycin MeSH
- riboswitch * MeSH
- uracil MeSH
The neomycin sensing riboswitch is the smallest biologically functional RNA riboswitch, forming a hairpin capped with a U-turn loop-a well-known RNA motif containing a conserved uracil. It was shown previously that a U→C substitution of the eponymous conserved uracil does not alter the riboswitch structure due to C protonation at N3. Furthermore, cytosine is evolutionary permitted to replace uracil in other U-turns. Here, we use molecular dynamics simulations to study the molecular basis of this substitution in the neomycin sensing riboswitch and show that a structure-stabilizing monovalent cation-binding site in the wild-type RNA is the main reason for its negligible structural effect. We then use NMR spectroscopy to confirm the existence of this cation-binding site and to demonstrate its effects on RNA stability. Lastly, using quantum chemical calculations, we show that the cation-binding site is altering the electronic environment of the wild-type U-turn so that it is more similar to the cytosine mutant. The study reveals an amazingly complex and delicate interplay between various energy contributions shaping up the 3D structure and evolution of nucleic acids.
Zobrazit více v PubMed
Weigand J.E., Sanchez M., Gunnesch E.-B., Zeiher S., Schroeder R., Suess B.. Screening for engineered neomycin riboswitches that control translation initiation. RNA. 2008; 14:89–97. PubMed PMC
Duchardt-Ferner E., Weigand J.E., Ohlenschläger O., Schmidtke S.R., Suess B., Wöhnert J.. Highly modular structure and ligand binding by conformational capture in a minimalistic riboswitch. Angew. Chem. Int. Ed. 2010; 49:6216–6219. PubMed
Gutell R.R., Cannone J.J., Konings D., Gautheret D.. Predicting U-turns in ribosomal RNA with comparative sequence analysis. J. Mol. Biol. 2000; 300:791–803. PubMed
Auffinger P., Westhof E.. An extended structural signature for the tRNA anticodon loop. RNA. 2001; 7:334–341. PubMed PMC
Leontis N.B., Westhof E.. Geometric nomenclature and classification of RNA base Pairs. RNA. 2001; 7:499–512. PubMed PMC
Leontis N.B., Stombaugh J., Westhof E.. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002; 30:3497–3531. PubMed PMC
Zirbel C.L., Sponer J.E., Sponer J., Stombaugh J., Leontis N.B.. Classification and energetics of the base-phosphate interactions in RNA. Nucleic Acids Res. 2009; 37:4898–4918. PubMed PMC
Gottstein-Schmidtke S.R., Duchardt-Ferner E., Groher F., Weigand J.E., Gottstein D., Suess B., Wöhnert J.. Building a stable RNA U-turn with a protonated cytidine. RNA. 2014; 20:1163–1172. PubMed PMC
Hiller D.A., Strobel S.A.. The chemical versatility of RNA. Philos. Trans. R. Soc. B. 2011; 366:2929–2935. PubMed PMC
Wilcox J.L., Bevilacqua P.C.. pKa shifting in double-Stranded RNA is highly dependent upon nearest neighbors and bulge positioning. Biochemistry. 2013; 52:7470–7476. PubMed
Wilcox J.L., Bevilacqua P.C.. A simple fluorescence method for pKa determination in RNA and DNA reveals highly shifted pKa's. J. Am. Chem. Soc. 2013; 135:7390–7393. PubMed
Wolter A.C., Weickhmann A.K., Nasiri A.H., Hantke K., Ohlenschläger O., Wunderlich C.H., Kreutz C., Duchardt-Ferner E., Wöhnert J.. A stably protonated adenine nucleotide with a highly shifted pKa value stabilizes the tertiary structure of a GTP-Binding RNA aptamer. Angew. Chem. Int. Ed. 2017; 56:401–404. PubMed
Duchardt-Ferner E., Wöhnert J.. NMR experiments for the rapid identification of P = O···H–X type hydrogen bonds in nucleic acids. J. Biomol. NMR. 2017; 69:101–110. PubMed
Šponer J., Bussi G., Krepl M., Banáš P., Bottaro S., Cunha R.A., Gil-Ley A., Pinamonti G., Poblete S., Jurečka P. et al. . RNA structural dynamics as captured by molecular Simulations: a comprehensive overview. Chem. Rev. 2018; 118:4177–4338. PubMed PMC
Auffinger P., Westhof E.. H-bond stability in the tRNA(Asp) anticodon hairpin: 3 ns of multiple molecular dynamics simulations. Biophys. J. 1996; 71:940–954. PubMed PMC
Auffinger P., Westhof E.. RNA Hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. J. Mol. Biol. 1997; 269:326–341. PubMed
Sefcikova J., Krasovska M.V., Šponer J., Walter N.G.. The genomic HDV ribozyme utilizes a previously unnoticed U-turn motif to accomplish fast Site-specific catalysis. Nucleic Acids Res. 2007; 35:1933–1946. PubMed PMC
Zhuang Z., Jaeger L., Shea J.E.. Probing the structural hierarchy and energy landscape of an RNA T-loop hairpin. Nucleic Acids Res. 2007; 35:6995–7002. PubMed PMC
Bergonzo C., Hall K.B., Cheatham T.E.. Stem-Loop V of varkud satellite RNA exhibits characteristics of the Mg2+ bound structure in the presence of monovalent ions. J. Phys. Chem. B. 2015; 119:12355–12364. PubMed PMC
Bergonzo C., Cheatham T.E.. Mg2+ binding promotes SLV as a scaffold in varkud satellite ribozyme SLI-SLV kissing loop junction. Biophys. J. 2017; 113:313–320. PubMed PMC
Zgarbova M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T.E., Jurecka P.. Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011; 7:2886–2902. PubMed PMC
Chawla M., Credendino R., Poater A., Oliva R., Cavallo L.. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site. J. Am. Chem. Soc. 2015; 137:299–306. PubMed
Chawla M., Abdel-Azeim S., Oliva R., Cavallo L.. Higher order structural effects stabilizing the reverse Watson–Crick guanine-cytosine base pair in functional RNAs. Nucleic Acids Res. 2014; 42:714–726. PubMed PMC
Banáš P., Jurečka P., Walter N.G., Šponer J., Otyepka M.. Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Methods. 2009; 49:202–216. PubMed PMC
Mlynsky V., Walter N.G., Sponer J., Otyepka M., Banas P.. The role of an active site Mg2+ in HDV ribozyme self-cleavage: insights from QM/MM calculations. Phys. Chem. Chem. Phys. 2015; 17:670–679. PubMed PMC
Gkionis K., Kruse H., Šponer J.. Derivation of reliable geometries in QM calculations of DNA structures: explicit solvent QM/MM and restrained implicit solvent QM optimizations of G-Quadruplexes. J. Chem. Theory Comput. 2016; 12:2000–2016. PubMed
Mlýnský V., Bussi G.. Understanding In-line probing experiments by modeling cleavage of nonreactive RNA nucleotides. RNA. 2017; 23:712–720. PubMed PMC
Radak B.K., Harris M.E., York D.M.. Molecular simulations of RNA 2′-O-transesterification reaction models in solution. J. Phys. Chem. B. 2013; 117:94–103. PubMed PMC
Wong K.Y., Lee T.S., York D.M.. Active participation of Mg Ion in the reaction coordinate of RNA Self-cleavage catalyzed by the hammerhead ribozyme. J. Chem. Theory Comput. 2011; 7:1–3. PubMed PMC
Ganguly A., Thaplyal P., Rosta E., Bevilacqua P.C., Hammes-Schiffer S.. Quantum Mechanical/Molecular mechanical free energy simulations of the Self-Cleavage reaction in the hepatitis delta virus ribozyme. J. Am. Chem. Soc. 2014; 136:1483–1496. PubMed PMC
Zhang S.X., Ganguly A., Goyal P., Bingaman J.L., Bevilacqua P.C., Hammes-Schiffer S.. Role of the active site guanine in the glmS ribozyme self-Cleavage Mechanism: Quantum Mechanical/Molecular mechanical free energy simulations. J. Am. Chem. Soc. 2015; 137:784–798. PubMed PMC
Duchardt-Ferner E., Gottstein-Schmidtke S.R., Weigand J.E., Ohlenschläger O., Wurm J.-P., Hammann C., Suess B., Wöhnert J.. What a difference an OH makes: Conformational dynamics as the basis for the ligand specificity of the Neomycin-Sensing riboswitch. Angew. Chem. Int. Ed. 2016; 55:1527–1530. PubMed
Banáš P., Walter N.G., Šponer J., Otyepka M.. Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics. J. Phys. Chem. B. 2010; 114:8701–8712. PubMed PMC
Mlynsky V., Banas P., Hollas D., Reblova K., Walter N.G., Sponer J., Otyepka M.. Extensive molecular dynamics simulations showing that canonical G8 and protonated A38H(+) forms are most consistent with crystal structures of hairpin ribozyme. J. Phys. Chem. B. 2010; 114:6642–6652. PubMed PMC
Veeraraghavan N., Ganguly A., Golden B.L., Bevilacqua P.C., Hammes-Schiffer S.. Mechanistic strategies in the HDV Ribozyme: chelated and diffuse metal ion interactions and active site protonation. J. Phys. Chem. B. 2011; 115:8346–8357. PubMed PMC
Krepl M., Reblova K., Koca J., Sponer J.. Bioinformatics and molecular dynamics simulation study of L1 stalk Non-Canonical rRNA Elements: Kink-Turns, loops, and tetraloops. J. Phys. Chem. B. 2013; 117:5540–5555. PubMed
Venditti V., Clos Ii L., Niccolai N., Butcher S.E.. Minimum-Energy path for a U6 RNA conformational change involving protonation, base-pair rearrangement and base flipping. J. Mol. Biol. 2009; 391:894–905. PubMed PMC
Krepl M., Cléry A., Blatter M., Allain F.H.T., Sponer J.. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 2016; 44:6452–6470. PubMed PMC
Krepl M., Blatter M., Cléry A., Damberger F.F., Allain F.H.T., Sponer J.. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Res. 2017; 45:8046–8063. PubMed PMC
Case D.A., R.M.B., Botello-Smith W., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W. et al. . 2016; San Francisco: University of California.
Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A.. A 2nd generation Force-Field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 1995; 117:5179–5197.
Perez A., Marchan I., Svozil D., Sponer J., Cheatham T.E., Laughton C.A., Orozco M.. Refinenement of the AMBER force field for nucleic Acids: Improving the description of Alpha/Gamma conformers. Biophys. J. 2007; 92:3817–3829. PubMed PMC
Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A.. Development and testing of a general amber force field. J. Comput. Chem. 2004; 25:1157–1174. PubMed
Jakalian A., Bush B.L., Jack D.B., Bayly C.I.. Fast, efficient generation of high-quality atomic charges. AM1-BCC Model: I. Method. J. Comput. Chem. 2000; 21:132–146. PubMed
Jakalian A., Jack D.B., Bayly C.I.. Fast, efficient generation of High-quality atomic charges. AM1-BCC Model: II. Parameterization and validation. J. Comput. Chem. 2002; 23:1623–1641. PubMed
Berendsen H.J.C., Grigera J.R., Straatsma T.P.. The missing term in effective pair potentials. J. Phys. Chem. 1987; 91:6269–6271.
Joung I.S., Cheatham T.E.. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC
Götz A.W., Clark M.A., Walker R.C.. An extensible interface for QM/MM molecular dynamics simulations with AMBER. J. Comput. Chem. 2014; 35:95–108. PubMed PMC
Ahlrichs R., Bar M., Haser M., Horn H., Kolmel C.. Electronic-Structure calculations on workstation Computers - the program system Turbomole. Chem. Phys. Lett. 1989; 162:165–169.
Tao J., Perdew J.P., Staroverov V.N., Scuseria G.E.. Climbing the density functional ladder: nonempirical Meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 2003; 91:146401. PubMed
Weigend F., Ahlrichs R.. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005; 7:3297–3305. PubMed
Kruse H., Mladek A., Gkionis K., Hansen A., Grimme S., Sponer J.. Quantum chemical benchmark study on 46 RNA backbone families using a dinucleotide unit. J. Chem. Theory Comput. 2015; 11:4972–4991. PubMed
Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011; 32:1456–1465. PubMed
Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J.. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994; 98:11623–11627.
Roe D.R., Cheatham T.E.. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013; 9:3084–3095. PubMed
Humphrey W., Dalke A., Schulten K.. VMD: visual molecular dynamics. J. Mol. Graph. 1996; 14:33–38. PubMed
Merritt E.A., Bacon D.J.. Carter C.W., Sweet R.M.. Raster3D: Photorealistic Molecular Graphics. Macromolecular Crystallography, Pt B. 1997; 277:San Diego: Elsevier Academic Press Inc; 505–524. PubMed
Duchardt-Ferner E., Ferner J., Wöhnert J.. Rapid identification of noncanonical RNA structure elements by direct detection of OH…O.P, NH…O.P, and NH2…O.P hydrogen bonds in solution NMR spectroscopy. Angew. Chem. Int. Ed. 2011; 50:7927–7930. PubMed
Steinbrecher T., Latzer J., Case D.A.. Revised AMBER parameters for bioorganic phosphates. J. Chem. Theory Comput. 2012; 8:4405–4412. PubMed PMC
Izadi S., Anandakrishnan R., Onufriev A.V.. Building water models: a different approach. J. Phys. Chem. Lett. 2014; 5:3863–3871. PubMed PMC
Kuhrova P., Best R., Bottaro S., Bussi G., Sponer J., Otyepka M., Banas P.. Computer folding of RNA tetraloops: identification of key force field deficiencies. J. Chem. Theory Comput. 2016; 12:4534–4548. PubMed PMC
Puglisi E.V., Puglisi J.D.. HIV-1 A-rich RNA loop mimics the tRNA anticodon structure. Nat. Struct. Mol. Biol. 1998; 5:1033–1036. PubMed
Ganichkin O.M., Anedchenko E.A., Wahl M.C.. Crystal structure analysis reveals functional flexibility in the selenocysteine-specific tRNA from mouse. PLoS One. 2011; 6:e20032. PubMed PMC
D’Ascenzo L., Leonarski F., Vicens Q., Auffinger P.. Revisiting GNRA and UNCG folds: U-turns versus Z-turns in RNA hairpin loops. RNA. 2017; 23:259–269. PubMed PMC
Chawla M., Chermak E., Zhang Q., Bujnicki J.M., Oliva R., Cavallo L.. Occurrence and stability of lone pair–π stacking interactions between ribose and nucleobases in functional RNAs. Nucleic Acids Res. 2017; 45:11019–11032. PubMed PMC
D’Ascenzo L., Leonarski F., Vicens Q., Auffinger P.. ‘Z-DNA like’ fragments in RNA: a recurring structural motif with implications for folding, RNA/protein recognition and immune response. Nucleic Acids Res. 2016; 44:5944–5956. PubMed PMC
Sponer J., Sponer J.E., Mladek A., Jurecka P., Banas P., Otyepka M.. Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment. Biopolymers. 2013; 99:978–988. PubMed
Wheeler S.E., Bloom J.W.G.. Toward a more complete understanding of noncovalent interactions involving aromatic rings. J. Phys. Chem. A. 2014; 118:6133–6147. PubMed
Campbell D.O., Bouchard P., Desjardins G., Legault P.. NMR structure of varkud satellite ribozyme stem−loop V in the presence of magnesium ions and localization of metal-binding sites. Biochemistry. 2006; 45:10591–10605. PubMed
Noeske J., Schwalbe H., Wöhnert J.. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain. Nucleic Acids Res. 2007; 35:5262–5273. PubMed PMC
Bertini I., Luchinat C.. Nmr of Paramagnetic Molecules in Biological Systems. 1986; Benjamin/Cummings Publishing Company.
Hobza P., Šponer J., Cubero E., Orozco M., Luque F.J.. C−H···O contacts in the adenine···Uuracil Watson−Crick and uracil···uracil nucleic acid base pairs: nonempirical ab initio study with inclusion of electron correlation effects. J. Phys. Chem. B. 2000; 104:6286–6292.
Pokorna P., Krepl M., Kruse H., Sponer J.. MD and QM/MM study of the quaternary HutP homohexamer complex with mRNA, L-histidine ligand and Mg2+. J. Chem. Theory Comput. 2017; 13:5658–5670. PubMed
Hawkins G.D., Cramer C.J., Truhlar D.G.. Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J. Phys. Chem. 1996; 100:19824–19839.
Klamt A., Schuurmann G.. Cosmo - A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 1993; 2:799–805.
Kimsey I.J., Petzold K., Sathyamoorthy B., Stein Z.W., Al-Hashimi H.M.. Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes. Nature. 2015; 519:315–320. PubMed PMC
Yildirim I., Turner D.H.. RNA challenges for computational chemists. Biochemistry. 2005; 44:13225–13234. PubMed PMC
Siegfried N.A., Kierzek R., Bevilacqua P.C.. Role of unsatisfied hydrogen bond acceptors in RNA energetics and specificity. J. Am. Chem. Soc. 2010; 132:5342–5344. PubMed
Nikolova E.N., Stull F., Al-Hashimi H.M.. Guanine to inosine substitution leads to large increases in the population of a transient G·C hoogsteen base pair. Biochemistry. 2014; 53:7145–7147. PubMed PMC
Sarver M., Zirbel C.L., Stombaugh J., Mokdad A., Leontis N.B.. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures. J. Math. Biol. 2008; 56:215–252. PubMed PMC
Kurata S., Weixlbaumer A., Ohtsuki T., Shimazaki T., Wada T., Kirino Y., Takai K., Watanabe K., Ramakrishnan V., Suzuki T.. Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U·G wobble pairing during decoding. J. Biol. Chem. 2008; 283:18801–18811. PubMed
Cilley C.D., Williamson J.R.. Structural mimicry in the phage [phis]21 N peptide–boxB RNA complex. RNA. 2003; 9:663–676. PubMed PMC
Ogle J.M., Brodersen D.E., Clemons W.M., Tarry M.J., Carter A.P., Ramakrishnan V.. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001; 292:897–902. PubMed
Wlodawer A., Minor W., Dauter Z., Jaskolski M.. Protein crystallography for Non-crystallographers, or how to get the best (but not more) from published macromolecular structures. Febs J. 2008; 275:1–21. PubMed PMC
Pan F., Roland C., Sagui C.. Ion distributions around Left- and Right-handed DNA and RNA Duplexes: a comparative study. Nucleic Acids Res. 2014; 42:13981–13996. PubMed PMC
Mlynsky V., Kuhrova P., Zgarbova M., Jurecka P., Walter N.G., Otyepka M., Sponer J., Banas P.. Reactive conformation of the active site in the hairpin ribozyme achieved by molecular dynamics simulations with epsilon/zeta force field reparametrizations. J. Phys. Chem. B. 2015; 119:4220–4229. PubMed
Condon D.E., Kennedy S.D., Mort B.C., Kierzek R., Yildirim I., Turner D.H.. Stacking in RNA: NMR of four tetramers benchmark molecular dynamics. J. Chem. Theory Comput. 2015; 11:2729–2742. PubMed PMC
Bergonzo C., Cheatham T.E.. Improved force field parameters lead to a better description of RNA structure. J. Chem. Theory Comput. 2015; 11:3969–3972. PubMed
Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA
The influence of Holliday junction sequence and dynamics on DNA crystal self-assembly
MD simulations reveal the basis for dynamic assembly of Hfq-RNA complexes
Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions