Sensitivity of the RNA Structure to Ion Conditions as Probed by Molecular Dynamics Simulations of Common Canonical RNA Duplexes

. 2023 Apr 10 ; 63 (7) : 2133-2146. [epub] 20230329

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36989143

RNA molecules play a key role in countless biochemical processes. RNA interactions, which are of highly diverse nature, are determined by the fact that RNA is a highly negatively charged polyelectrolyte, which leads to intimate interactions with an ion atmosphere. Although RNA molecules are formally single-stranded, canonical (Watson-Crick) duplexes are key components of folded RNAs. A double-stranded (ds) RNA is also important for the design of RNA-based nanostructures and assemblies. Despite the fact that the description of canonical dsRNA is considered the least problematic part of RNA modeling, the imperfect shape and flexibility of dsRNA can lead to imbalances in the simulations of larger RNAs and RNA-containing assemblies. We present a comprehensive set of molecular dynamics (MD) simulations of four canonical A-RNA duplexes. Our focus was directed toward the characterization of the influence of varying ion concentrations and of the size of the solvation box. We compared several water models and four RNA force fields. The simulations showed that the A-RNA shape was most sensitive to the RNA force field, with some force fields leading to a reduced inclination of the A-RNA duplexes. The ions and water models played a minor role. The effect of the box size was negligible, and even boxes with a small fraction of the bulk solvent outside the RNA hydration sphere were sufficient for the simulation of the dsRNA.

Erratum v

PubMed

Zobrazit více v PubMed

Draper D. E. Folding of RNA Tertiary Structure: Linkages Between Backbone Phosphates, Ions, and Water. Biopolymers 2013, 99, 1105–1113. 10.1002/bip.22249. PubMed DOI PMC

Woodson S. A. Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr. Opin. Chem. Biol. 2005, 9, 104–109. 10.1016/j.cbpa.2005.02.004. PubMed DOI

Misra V. K.; Draper D. E. The linkage between magnesium binding and RNA folding. J. Mol. Biol. 2002, 317, 507–521. 10.1006/jmbi.2002.5422. PubMed DOI

Schnabl J.; Sigel R. K. O. Controlling ribozyme activity by metal ions. Curr. Opin. Chem. Biol. 2010, 14, 269–275. 10.1016/j.cbpa.2009.11.024. PubMed DOI

Swaminathan V.; Sundaralingam M.; Bau R. The crystal structures of metal complexes of nucleic acids and their constituents. CRC Crit. Rev. Biochem. 1979, 6, 245–336. 10.3109/10409237909102565. PubMed DOI

Frederiksen J. K.; Piccirilli J. A. Identification of catalytic metal ion ligands in ribozymes. Methods 2009, 49, 148–166. 10.1016/j.ymeth.2009.07.005. PubMed DOI PMC

Young M. A.; Jayaram B.; Beveridge D. L. Intrusion of counterions into the spine of hydration in the minor groove of B-DNA: Fractional occupancy of electronegative pockets. J. Am. Chem. Soc. 1997, 119, 59–69. 10.1021/ja960459m. DOI

Draper D. E. A guide to ions and RNA structure. RNA 2004, 10, 335–343. 10.1261/rna.5205404. PubMed DOI PMC

Feig M.; Pettitt B. M. Sodium and chlorine ions as part of the DNA solvation shell. Biophys. J. 1999, 77, 1769–1781. 10.1016/S0006-3495(99)77023-2. PubMed DOI PMC

Laing L. G.; Gluick T. C.; Draper D. E. Stabilization of RNA Structure by Mg Ions. J. Mol. Biol. 1994, 237, 577–587. 10.1006/jmbi.1994.1256. PubMed DOI

Gluick T. C.; Gerstner R. B.; Draper D. E. Effects of Mg2+, K+, and H+ on an equilibrium between alternative conformations of an RNA pseudoknot. J. Mol. Biol. 1997, 270, 451–463. 10.1006/jmbi.1997.1119. PubMed DOI

Bai Y.; Greenfeld M.; Travers K. J.; Chu V. B.; Lipfert J.; Doniach S.; Herschlag D. Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J. Am. Chem. Soc. 2007, 129, 14981–14988. 10.1021/ja075020g. PubMed DOI PMC

Meisburger S. P.; Pabit S. A.; Pollack L. Determining the Locations of Ions and Water around DNA from X-Ray Scattering Measurements. Biophys. J. 2015, 108, 2886–2895. 10.1016/j.bpj.2015.05.006. PubMed DOI PMC

Greenfeld M.; Herschlag D. Probing Nucleic Acid-Ion Interactions with Buffer Exchange-Atomic Emission Spectroscopy. Methods Enzymol. 2009, 469, 375–389. 10.1016/S0076-6879(09)69018-2. PubMed DOI

Gebala M.; Giambasu G. M.; Lipfert J.; Bisaria N.; Bonilla S.; Li G.; York D. M.; Herschlag D. Cation-Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting. J. Am. Chem. Soc. 2015, 137, 14705–14715. 10.1021/jacs.5b08395. PubMed DOI PMC

Gebala M.; Bonilla S.; Bisaria N.; Herschlag D. Does Cation Size Affect Occupancy and Electrostatic Screening of the Nucleic Acid Ion Atmosphere?. J. Am. Chem. Soc. 2016, 138, 10925–10934. 10.1021/jacs.6b04289. PubMed DOI PMC

Gebala M.; Herschlag D. Quantitative Studies of an RNA Duplex Electrostatics by Ion Counting. Biophys. J. 2019, 117, 1116–1124. 10.1016/j.bpj.2019.08.007. PubMed DOI PMC

Pabit S. A.; Meisburger S. P.; Li L.; Blose J. M.; Jones C. D.; Pollack L. Counting Ions around DNA with Anomalous Small-Angle X-ray Scattering. J. Am. Chem. Soc. 2010, 132, 16334–16336. 10.1021/ja107259y. PubMed DOI PMC

Pollack L. SAXS Studies of Ion-Nucleic Acid Interactions. Annu. Rev. Biophys. 2011, 40, 225–242. 10.1146/annurev-biophys-042910-155349. PubMed DOI

Kirmizialtin S.; Pabit S. A.; Meisburger S. P.; Pollack L.; Elber R. RNA and Its Ionic Cloud: Solution Scattering Experiments and Atomically Detailed Simulations. Biophys. J. 2012, 102, 819–828. 10.1016/j.bpj.2012.01.013. PubMed DOI PMC

Das R.; Mills T. T.; Kwok L. W.; Maskel G. S.; Millett I. S.; Doniach S.; Finkelstein K. D.; Herschlag D.; Pollack L. Counterion distribution around DNA probed by solution X-ray scattering. Phys. Rev. Lett. 2003, 90, 18810310.1103/PhysRevLett.90.188103. PubMed DOI

Grilley D.; Soto A. M.; Draper D. E. Mg2+-RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 14003–14008. 10.1073/pnas.0606409103. PubMed DOI PMC

Tan Z. J.; Chen S. J. Nucleic acid helix stability: Effects of salt concentration, cation valence and size, and chain length. Biophys. J. 2006, 90, 1175–1190. 10.1529/biophysj.105.070904. PubMed DOI PMC

Tan Z.; Zhang W.; Shi Y.; Wang F. RNA Folding: Structure Prediction, Folding Kinetics and Ion Electrostatics. Adv. Exp. Med. Biol. 2015, 827, 143–183. 10.1007/978-94-017-9245-5_11. PubMed DOI

Shklovskii B. I. Screening of a macroion by multivalent ions: Correlation-induced inversion of charge. Phys. Rev. E 1999, 60, 5802–5811. 10.1103/PhysRevE.60.5802. PubMed DOI

Poon W. C. K.; Andelman D.. Soft Condensed Matter Physics in Molecular and Cell Biology (1st ed.); CRC Press: 2006.

Manning G. S. Counterion Binding in Polyelectrolyte Theory. Acc. Chem. Res. 1979, 12, 443–449. 10.1021/ar50144a004. DOI

Manning G. S. Molecular Theory of Polyelectrolyte Solutions with Applications to Electrostatic Properties of Polynucleotides. Q. Rev. Biophys. 1978, 11, 179–246. 10.1017/S0033583500002031. PubMed DOI

Manning G. S. Counterion condensation on charged spheres, cylinders, and planes. J. Phys. Chem. B 2007, 111, 8554–8559. 10.1021/jp0670844. PubMed DOI

Manning G. S. Electrostatic free energies of spheres, cylinders, and planes in counterion condensation theory with some applications. Macromolecules 2007, 40, 8071–8081. 10.1021/ma071457x. DOI

Manning G. S. A counterion condensation theory for the relaxation, rise, and frequency dependence of the parallel polarization of rodlike polyelectrolytes. Eur. Phys. J. E: Soft Matter Biol. Phys. 2011, 34, 39.10.1140/epje/i2011-11039-2. PubMed DOI

Sharp K. A.; Honig B. Salt Effects on Nucleic-Acids. Curr. Opin. Struct. Biol. 1995, 5, 323–328. 10.1016/0959-440X(95)80093-X. PubMed DOI

Giambaşu G. M.; Luchko T.; Herschlag D.; York D. M.; Case D. A. Ion Counting from Explicit-Solvent Simulations and 3D-RISM. Biophys. J. 2014, 106, 883–894. 10.1016/j.bpj.2014.01.021. PubMed DOI PMC

Howard J. J.; Lynch G. C.; Pettitt B. M. Ion and Solvent Density Distributions around Canonical B-DNA from Integral Equations. J. Phys. Chem. B 2011, 115, 547–556. 10.1021/jp107383s. PubMed DOI PMC

Giambaşu G. M.; Case D. A.; York D. M. Predicting Site-Binding Modes of Ions and Water to Nucleic Acids Using Molecular Solvation Theory. J. Am. Chem. Soc. 2019, 141, 2435–2445. 10.1021/jacs.8b11474. PubMed DOI PMC

Auffinger P.; Bielecki L.; Westhof E. Symmetric K+ and Mg2+ ion-binding sites in the 5S rRNA loop E inferred from molecular dynamics simulations. J. Mol. Biol. 2004, 335, 555–571. 10.1016/j.jmb.2003.10.057. PubMed DOI

Bonvin A. M. J. J. Localisation and dynamics of sodium counterions around DNA in solution from molecular dynamics simulation. Eur. Biophys. J. Biophys. 2000, 29, 57–60. 10.1007/s002490050251. PubMed DOI

Cheatham T. E. III Simulation and modeling of nucleic acid structure, dynamics and interactions. Curr. Opin. Struct. Biol. 2004, 14, 360–367. 10.1016/j.sbi.2004.05.001. PubMed DOI

Cheatham T. E.; Kollman P. A. Molecular dynamics simulations highlight the structural differences among DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes. J. Am. Chem. Soc. 1997, 119, 4805–4825. 10.1021/ja963641w. DOI

Chen A. A.; Draper D. E.; Pappu R. V. Molecular Simulation Studies of Monovalent Counterion-Mediated Interactions in a Model RNA Kissing Loop. J. Mol. Biol. 2009, 390, 805–819. 10.1016/j.jmb.2009.05.071. PubMed DOI PMC

Chen A. A.; Marucho M.; Baker N. A.; Pappu R. V. Simulations of Rna Interactions with Monovalent Ions. Methods Enzymol. 2009, 469, 411–432. 10.1016/S0076-6879(09)69020-0. PubMed DOI

Chen H.; Meisburger S. P.; Pabit S. A.; Sutton J. L.; Webb W. W.; Pollack L. Ionic strength-dependent persistence lengths of single-stranded RNA and DNA. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 799–804. 10.1073/pnas.1119057109. PubMed DOI PMC

Csaszar K.; Špačková N.; Štefl R.; Šponer J.; Leontis N. B. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: The role of non- Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding. J. Mol. Biol. 2001, 313, 1073–1091. 10.1006/jmbi.2001.5100. PubMed DOI

Drozdetski A. V.; Tolokh I. S.; Pollack L.; Baker N.; Onufriev A. V. Opposing Effects of Multivalent Ions on the Flexibility of DNA and RNA. Phys. Rev. Lett. 2016, 117, 02810110.1103/PhysRevLett.117.028101. PubMed DOI PMC

Kirmizialtin S.; Elber R. Computational Exploration of Mobile Ion Distributions around RNA Duplex. J. Phys. Chem. B 2010, 114, 8207–8220. 10.1021/jp911992t. PubMed DOI PMC

Kirmizialtin S.; Silalahi A. R. J.; Elber R.; Fenley M. O. The Ionic Atmosphere around A-RNA: Poisson-Boltzmann and Molecular Dynamics Simulations. Biophys. J. 2012, 102, 829–838. 10.1016/j.bpj.2011.12.055. PubMed DOI PMC

Pan F.; Man V. H.; Roland C.; Sagui C. Stability and Ion Distributions Around Left- and Right-Handed DNA and RNA Duplexes: A Comparative Study. Biophys. J. 2016, 110, 407a–407a. 10.1016/j.bpj.2015.11.2197. PubMed DOI PMC

Pan F.; Roland C.; Sagui C. Ion distributions around left- and right-handed DNA and RNA duplexes: a comparative study. Nucleic Acids Res. 2014, 42, 13981–13996. 10.1093/nar/gku1107. PubMed DOI PMC

Réblová K.; Fadrná E.; Sarzynska J.; Kulinski T.; Kulhánek P.; Ennifar E.; Koča J.; Šponer J. Conformations of flanking bases in HIV-1 RNA DIS kissing complexes studied by molecular dynamics. Biophys. J. 2007, 93, 3932–3949. 10.1529/biophysj.107.110056. PubMed DOI PMC

Réblová K.; Špačková N.; Šponer J. E.; Koča J.; Šponer J. Molecular dynamics simulations of RNA kissing-loop motifs reveal structural dynamics and formation of cation-binding pockets. Nucleic Acids Res. 2003, 31, 6942–6952. 10.1093/nar/gkg880. PubMed DOI PMC

Réblová K.; Špačková N.; Stefl R.; Csaszar K.; Koča J.; Leontis N. B.; Šponer J. Non-Watson-Crick basepairing and hydration in RNA motifs: Molecular dynamics of 5S rRNA loop E. Biophys. J. 2003, 84, 3564–3582. 10.1016/S0006-3495(03)75089-9. PubMed DOI PMC

Tsui V.; Case D. A. Calculations of the absolute free energies of binding between RNA and metal ions using molecular dynamics simulations and continuum electrostatics. J. Phys. Chem. B 2001, 105, 11314–11325. 10.1021/jp011923z. DOI

Zichi D. A. Molecular Dynamics of RNA with the OPLS Force Field. Aqueous Simulation of a Hairpin Containing a Tetranucleotide Loop. J. Am. Chem. Soc. 1995, 117, 2957–2969. 10.1021/ja00116a001. DOI

Cruz-León S.; Schwierz N. RNA Captures More Cations than DNA: Insights from Molecular Dynamics Simulations. J. Phys. Chem. B 2022, 126, 8646–8654. 10.1021/acs.jpcb.2c04488. PubMed DOI PMC

Šponer J.; Bussi G.; Krepl M.; Banáš P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; et al. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118, 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Rázga F.; Zacharias M.; Reblova K.; Koča J.; Šponer J. RNA kink-turns as molecular elbows: Hydration, cation binding, and large-scale dynamics. Structure 2006, 14, 825–835. 10.1016/j.str.2006.02.012. PubMed DOI

Špačková N.; Réblová K.; Šponer J. Structural Dynamics of the Box C/D RNA Kink-Turn and Its Complex with Proteins: The Role of the A-Minor 0 Interaction, Long-Residency Water Bridges, and Structural Ion-Binding Sites Revealed by Molecular Simulations. J. Phys. Chem. B 2010, 114, 10581–10593. 10.1021/jp102572k. PubMed DOI

Beššeová I.; Réblová K.; Leontis N. B.; Šponer J. Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome. Nucleic Acids Res. 2010, 38, 6247–6264. 10.1093/nar/gkq414. PubMed DOI PMC

Beššeová I.; Otyepka M.; Réblová K.; Šponer J. Dependence of A-RNA simulations on the choice of the force field and salt strength. Phys. Chem. Chem. Phys. 2009, 11, 10701–10711. 10.1039/b911169g. PubMed DOI

He W.; Chen Y.-L.; Pollack L.; Kirmizialtin S. The structural plasticity of nucleic acid duplexes revealed by WAXS and MD. Sci. Adv. 2021, 7, 17.10.1126/sciadv.abf6106. PubMed DOI PMC

Beššeová I.; Banáš P.; Kührová P.; Košinová P.; Otyepka M.; Šponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J. Phys. Chem. B 2012, 116, 9899–9916. 10.1021/jp3014817. PubMed DOI

Pinamonti G.; Bottaro S.; Micheletti C.; Bussi G. Elastic network models for RNA: a comparative assessment with molecular dynamics and SHAPE experiments. Nucleic Acids Res. 2015, 43, 7260–7269. 10.1093/nar/gkv708. PubMed DOI PMC

Sklenovský P.; Florová P.; Banáš P.; Réblová K.; Lankaš F.; Otyepka M.; Šponer J. Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal and Group I Intron Reverse Kink-Turn Motifs. J. Chem. Theory Comput. 2011, 7, 2963–2980. 10.1021/ct200204t. PubMed DOI

Kührová P.; Otyepka M.; Šponer J.; Banáš P. Are Waters around RNA More than Just a Solvent? - An Insight from Molecular Dynamics Simulations. J. Chem. Theory Comput. 2014, 10, 401–411. 10.1021/ct400663s. PubMed DOI

Kolesnikov E. S.; Gushchin I. Y.; Zhilyaev P. A.; Onufriev A. V. Similarities and Differences between Na+ and K+ Distributions around DNA Obtained with Three Popular Water Models. J. Chem. Theory Comput. 2021, 17, 7246–7259. 10.1021/acs.jctc.1c00332. PubMed DOI PMC

Case D. A. B.; R M.; Cerutti D. S.; Cheatham T. E.; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; Homeyer N., et al.AMBER 2016; University of California: San Francisco, 2016.

Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic MoleculesJ.Am.Chem.Soc.1995,117, 5179–5197. J. Am. Chem. Soc. 1996, 118, 2309–2309. 10.1021/ja955032e. DOI

Wang J.; Cieplak P.; Kollman P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 2000, 21, 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI

Pérez A.; Marchán I.; Svozil D.; Sponer J.; Cheatham T. E. III; Laughton C. A.; Orozco M. Refinenement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophys. J. 2007, 92, 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC

Zgarbová M.; Otyepka M.; Šponer J.; Mládek A.; Banáš P.; Cheatham T. E. III; Jurečka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7, 2886–2902. 10.1021/ct200162x. PubMed DOI PMC

Steinbrecher T.; Latzer J.; Case D. A. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012, 8, 4405–4412. 10.1021/ct300613v. PubMed DOI PMC

Mlýnský V.; Kührová P.; Zgarbová M.; Jurečka P.; Walter N. G.; Otyepka M.; Šponer J.; Banáš P. Reactive Conformation of the Active Site in the Hairpin Ribozyme Achieved by Molecular Dynamics Simulations with epsilon/zeta Force Field Reparametrizations. J. Phys. Chem. B 2015, 119, 4220–4229. 10.1021/jp512069n. PubMed DOI

Kührová P.; Best R. B.; Bottaro S.; Bussi G.; Šponer J.; Otyepka M.; Banáš P. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J. Chem. Theory Comput. 2016, 12, 4534–4548. 10.1021/acs.jctc.6b00300. PubMed DOI PMC

Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions (vol 15, pg 3288, 2019). J. Chem. Theory Comput. 2020, 16, 818–819. 10.1021/acs.jctc.9b01189. PubMed DOI PMC

Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15, 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC

Dock-bregeon A. C.; Chevrier B.; Podjarny A.; Johnson J.; de bear J. S.; Gough G. R.; Gilham P. T.; Moras D. Crystallographic Structure of an Rna Helix - [U(Ua)6a]2. J. Mol. Biol. 1989, 209, 459–474. 10.1016/0022-2836(89)90010-7. PubMed DOI

Klosterman P. S.; Shah S. A.; Steitz T. A. Crystal structures of two plasmid copy control related RNA duplexes: An 18 base pair duplex at 1.20 A resolution and a 19 base pair duplex at 1.55 A resolution. Biochemistry 1999, 38, 14784–14792. 10.1021/bi9912793. PubMed DOI

O’Neil-Cabello E.; Bryce D. L.; Nikonowicz E. P.; Bax A. Measurement of five dipolar couplings from a single 3D NMR multiplet applied to the study of RNA dynamics. J. Am. Chem. Soc. 2004, 126, 66–67. 10.1021/ja038314k. PubMed DOI

Case D. A.; Cheatham T. E.; Darden T.; Gohlke H.; Luo R.; Merz K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26, 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI

Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. 10.1021/j100308a038. DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Piana S.; Donchev A. G.; Robustelli P.; Shaw D. E. Water Dispersion Interactions Strongly Influence Simulated Structural Properties of Disordered Protein States. J. Phys. Chem. B 2015, 119, 5113–5123. 10.1021/jp508971m. PubMed DOI

Joung I. S.; Cheatham T. E. III Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

Aytenfisu A. H.; Spasic A.; Grossfield A.; Stern H. A.; Mathews D. H. Revised RNA Dihedral Parameters for the Amber Force Field Improve RNA Molecular Dynamics. J. Chem. Theory Comput. 2017, 13, 900–915. 10.1021/acs.jctc.6b00870. PubMed DOI PMC

Chen A. A.; García A. E. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 16820–16825. 10.1073/pnas.1309392110. PubMed DOI PMC

Ȧqvist J. Ion Water Interaction Potentials Derived from Free-Energy Perturbation Simulations. J. Phys. Chem. 1990, 94, 8021–8024. 10.1021/j100384a009. DOI

Fox T.; Kollman P. A. Application of the RESP methodology in the parametrization of organic solvents. J. Phys. Chem. B 1998, 102, 8070–8079. 10.1021/jp9717655. DOI

Tan D.; Piana S.; Dirks R. M.; Shaw D. E. RNA force field with accuracy comparable to state-of-the-art protein force fields. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E1346–E1355. 10.1073/pnas.1713027115. PubMed DOI PMC

Foloppe N.; MacKerell A. D. Jr. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 2000, 21, 86–104. 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G. DOI

MacKerell A. D. Jr.; Banavali N.; Foloppe N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers 2001, 56, 257–265. PubMed

Roe D. R.; Cheatham T. E. III PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. 10.1021/ct400341p. PubMed DOI

Humphrey W.; Dalke A.; Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics Modell. 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Day R.; Daggett V. Ensemble versus single-molecule protein unfolding. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 13445–13450. 10.1073/pnas.0501773102. PubMed DOI PMC

Krepl M.; Vögele J.; Kruse H.; Duchardt-Ferner E.; Wöhnert J.; Šponer J. An intricate balance of hydrogen bonding, ion atmosphere and dynamics facilitates a seamless uracil to cytosine substitution in the U-turn of the neomycin-sensing riboswitch. Nucleic Acids Res. 2018, 46, 6528–6543. 10.1093/nar/gky490. PubMed DOI PMC

Zgarbová M.; Jurečka P.; Banáš P.; Havrila M.; Šponer J.; Otyepka M. Noncanonical alpha/gamma Backbone Conformations in RNA and the Accuracy of Their Description by the AMBER Force Field. J. Phys. Chem. B 2017, 121, 2420–2433. 10.1021/acs.jpcb.7b00262. PubMed DOI

Krepl M.; Réblová K.; Koča J.; Šponer J. Bioinformatics and molecular dynamics simulation study of L1 stalk non-canonical rRNA elements: kink-turns, loops, and tetraloops. J. Phys. Chem. B 2013, 117, 5540–5555. 10.1021/jp401482m. PubMed DOI

Bao L.; Zhang X.; Shi Y. Z.; Wu Y. Y.; Tan Z. J. Understanding the Relative Flexibility of Rna and DNA Duplexes: Stretching and Twist-Stretch Coupling. Biophys. J. 2017, 112, 1094–1104. 10.1016/j.bpj.2017.02.022. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace