Dependence of A-RNA simulations on the choice of the force field and salt strength
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20145814
DOI
10.1039/b911169g
Knihovny.cz E-zdroje
- MeSH
- chlorid draselný chemie MeSH
- chlorid sodný chemie MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- párování bází MeSH
- RNA chemie MeSH
- sekvence nukleotidů MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid draselný MeSH
- chlorid sodný MeSH
- RNA MeSH
We present an extensive molecular dynamics study (0.6 micros in total) on three A-RNA duplexes. The dependence of the A-RNA geometry on force fields (Parm99 and Parmbsc0) and salt strength conditions (approximately 0.18 M net-neutralizing Na(+) and approximately 0.3 M KCl) was investigated. The Parmbsc0 force field makes the A-RNA duplex more compact in comparison to the Parm99 by preventing temporary alpha/gamma t/t flips common in Parm99 simulations. Nevertheless, since the alpha/gamma t/t sub-state occurs to certain extent in experimental A-RNA structures, we consider both force fields as viable. The stabilization of the A-RNA helices caused by the Parmbsc0 force field includes visible reduction of the major groove width, increase of the base pair roll, larger helical inclination and small increases of twist. Therefore, the Parmbsc0 shifts the simulated duplexes more deeply into the A-form. Further narrowing of the deep major groove is observed in excess salt simulations, again accompanied by larger roll, inclination and twist. The cumulative difference between Parm99/lower-salt and Parmbsc0/higher-salt simulations is approximately 4-8 A for the average PP distances, and -0.7 to -2.5 degrees, -2.0 to -5.4 degrees, -2.6 to -8.6 degrees and 1.7 to 7.0 degrees for the twist, roll, inclination and propeller, respectively. The effects of the force field and salt condition are sequence-dependent. Thus, the compactness of A-RNA is sensitive to the sequence and the salt strength which may, for example, modulate the end-to-end distance of the A-RNA helix. The simulations neatly reproduce the known base pair roll re-distribution in alternating purine-pyrimidine A-RNA helices.
Citace poskytuje Crossref.org
Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies
Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study
Structure and mechanical properties of the ribosomal L1 stalk three-way junction