Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM062357
NIGMS NIH HHS - United States
R01 GM062357-07
NIGMS NIH HHS - United States
R01 GM062357-08
NIGMS NIH HHS - United States
GM62357
NIGMS NIH HHS - United States
PubMed
20536206
PubMed Central
PMC2900856
DOI
10.1021/jp9109699
Knihovny.cz E-zdroje
- MeSH
- glukosa-6-fosfát analogy a deriváty metabolismus MeSH
- glukosamin analogy a deriváty metabolismus MeSH
- glutaminfruktosa-6-fosfáttransaminasa (izomerizující) genetika MeSH
- katalytická doména * MeSH
- koenzymy metabolismus MeSH
- konformace nukleové kyseliny MeSH
- molekulární sekvence - údaje MeSH
- protony * MeSH
- RNA katalytická chemie genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- simulace molekulární dynamiky * MeSH
- Thermoanaerobacter enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glucosamine 6-phosphate MeSH Prohlížeč
- glukosa-6-fosfát MeSH
- glukosamin MeSH
- glutaminfruktosa-6-fosfáttransaminasa (izomerizující) MeSH
- koenzymy MeSH
- protony * MeSH
- RNA katalytická MeSH
The glmS catalytic riboswitch is part of the 5'-untranslated region of mRNAs encoding glucosamine-6-phosphate (GlcN6P) synthetase (glmS) in numerous gram-positive bacteria. Binding of the cofactor GlcN6P induces site-specific self-cleavage of the RNA. However, the detailed reaction mechanism as well as the protonation state of the glmS reactive form still remains elusive. To probe the dominant protonation states of key active site residues, we carried out explicit solvent molecular dynamic simulations involving various protonation states of three crucial active site moieties observed in the available crystal structures: (i) guanine G40 (following the Thermoanaerobacter tengcongensis numbering), (ii) the GlcN6P amino/ammonium group, and (iii) the GlcN6P phosphate moiety. We found that a deprotonated G40(-) seems incompatible with the observed glmS active site architecture. Our data suggest that the canonical form of G40 plays a structural role by stabilizing an in-line attack conformation of the cleavage site A-1(2'-OH) nucleophile, rather than a more direct chemical role. In addition, we observe weakened cofactor binding upon protonation of the GlcN6P phosphate moiety, which explains the experimentally observed increase in K(m) with decreasing pH. Finally, we discuss a possible role of cofactor binding and its interaction with the G65 and G1 purines in structural stabilization of the A-1(2'-OH) in-line attack conformation. On the basis of the identified dominant protonation state of the reaction precursor, we propose a hypothesis of the self-cleavage mechanism in which A-1(2'-OH) is activated as a nucleophile by the G1(pro-R(p)) nonbridging oxygen of the scissile phosphate, whereas the ammonium group of GlcN6P acts as the general acid protonating the G1(O5') leaving group.
Zobrazit více v PubMed
Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. Cell. 2003;113:577. PubMed
Tucker BJ, Breaker RR. Curr. Opin. Struct. Biol. 2005;15:342. PubMed
Winkler WC, Breaker RR. Annu. Rev. Microbiol. 2005;59:487. PubMed
Henkin TM. Gen. Dev. 2008;22:3383. PubMed PMC
Coppins RL, Hall KB, Groisman EA. Curr. Opin. Microbiol. 2007;10:176. PubMed PMC
Winkler WC. Curr. Opin. Chem. Biol. 2005;9:594. PubMed
Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, et al. Proc. Natl. Acad. Sci. 2004;101:6421. PubMed PMC
Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Nature. 2004;428:281. PubMed
Milewski S. BBA. 2002;1597:173. PubMed
Batey RT, Gilbert SD, Montange RK. Nature. 2004;432:411. PubMed
Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, et al. Genome Biology. 2005;6 PubMed PMC
Grundy FJ, Henkin TM. Crit. Rev. Biochem. 2006;41:329. PubMed
Hampel KJ, Tinsley MM. Biochemistry. 2006;45:7861. PubMed
Fedor MJ. Annu. Rev. Biophys. 2009;38:271. PubMed
Tinsley RA, Furchak JRW, Walter NG. RNA. 2007;13:468. PubMed PMC
McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, et al. Chem. Biol. 2005;12:1221. PubMed
Collins JA, Irnov I, Baker S, Winkler WC. Gen. Dev. 2007;21:3356. PubMed PMC
Banas P, Rulisek L, Hanosova V, Svozil D, Walter NG, et al. J. Phys. Chem. B. 2008;112:11177. PubMed PMC
Bevilacqua PC, Yajima R. Curr. Opin. Chem. Biol. 2006;10:455. PubMed
Cochrane JC, Strobel SA. Acc. Chem. Res. 2008;41:1027. PubMed
Strobel SA, Cochrane JC. Curr. Opin. Chem. Biol. 2007;11:636. PubMed PMC
Lilley DMJ, Eckstein F. Ribozymes and RNA Catalysis. The Royal Society of Chemistry; Cambridge: 2008.
Walter NG. Mol. Cell. 2007;28:923. PubMed PMC
Roth A, Nahvi A, Lee M, Jona I, Breaker RR. RNA. 2006;12:607. PubMed PMC
Klein DJ, Been MD, Ferre-D'Amare AR. J. Am. Chem. Soc. 2007;129:14858. PubMed
Klein DJ, Ferre-D'Amare AR. Science. 2006;313:1752. PubMed
Klein DJ, Wilkinson SR, Been MD, Ferre-D'Amare AR. J. Mol. Biol. 2007;373:178. PubMed PMC
Cochrane JC, Lipchock SV, Strobel SA. Chem. Biol. 2007;14:95. PubMed PMC
Soukup GA. Nucleic Acids Res. 2006;34:968. PubMed PMC
Jansen JA, McCarthy TJ, Soukup GA, Soukup JK. Nat. Struct, Mol. Biol. 2006;13:517. PubMed
Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202. PubMed PMC
McDowell SE, Spackova N, Sponer J, Walter NG. Biopolymers. 2007;85:169. PubMed PMC
Auffinger P, Hashem Y. Curr. Opin. Struct. Biol. 2007;17:325. PubMed
Hall KB. Curr. Opin. Chem. Biol. 2008;12:612. PubMed PMC
Sponer J, Lankas F. Computational studies of RNA and DNA. Springer; 2006.
Cheatham TE. Curr. Opin. Struct. Biol. 2004;14:360. PubMed
Ditzler MA, Otyepka M, Sponer J, Walter NG. Acc. Chem. Res. 2010;42:40. PubMed PMC
Razga F, Koca J, Mokdad A, Sponer J. Nucleic Acids Res. 2007;35:4007. PubMed PMC
Almlof M, Ander M, Aqvist J. Biochemistry. 2007;46:200. PubMed
Villa A, Wöhnert J, Stock G. Nucleic Acids Res. 2009;37:4774. PubMed PMC
Lee TS, Lopez CS, Giambasu GM, Martick M, Scott WG, et al. J. Am. Chem. Soc. 2008;130:3053. PubMed PMC
Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, et al. Biophys. J. 2006;91:626. PubMed PMC
Reblova K, Spackova N, Stefl R, Csaszar K, Koca J, et al. Biophys. J. 2003;84:3564. PubMed PMC
Auffinger P, Bielecki L, Westhof E. J. Mol. Biol. 2004;335:555. PubMed
Lee TS, Giambasu GM, Sosa CP, Martick M, Scott WG, et al. J. Mol. Biol. 2009;388:195. PubMed PMC
Martick M, Lee TS, York DM, Scott WG. Chem. Biol. 2008;15:332. PubMed PMC
Rhodes MM, Reblova K, Sponer J, Walter NG. Proc. Natl. Acad. Sci. 2006;103:13380. PubMed PMC
Razga F, Koca J, Sponer J, Leontis NB. Biophys. J. 2005;88:3466. PubMed PMC
Ditzler MA, Sponer J, Walter NG. RNA. 2009;15:560. PubMed PMC
Csaszar K, Spackova N, Stefl R, Sponer J, Leontis NB. J. Mol. Biol. 2001;313:1073. PubMed
Lee TS, York DM. J. Am. Chem. Soc. 2008;130:7168. PubMed PMC
Nam KH, Gao JL, York DM. J. Am. Chem. Soc. 2008;130:4680. PubMed PMC
Trobro S, Aqvist J. Proc. Natl. Acad. Sci. 2005;102:12395. PubMed PMC
Trobro S, Aqvist J. Mol. Cell. 2007;27:758. PubMed
Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. J. Mol. Biol. 2005;351:731. PubMed
Gresh N, Sponer JE, Spackova N, Leszczynski J, Sponer J. J. Phys. Chem. B. 2003;107:8669.
Case DA, Darden TA, T.E. Cheatham I, Simmerling CL, Wang J, et al. AMBER 9. University of California; San Francisco: 2006.
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, et al. J. Am. Chem. Soc. 1995;117:5179.
Wang JM, Cieplak P, Kollman PA. J. Comput. Chem. 2000;21:1049.
Cornell WD, Cieplak P, Bayly CI, Kollman PA. J. Am. Chem. Soc. 1993;115:9620.
Dennington RI, Keith T, Millam J, Eppinnett K, Hovell WL, et al. GaussView. Version 3.0 Semichem, Inc.; Shawnee Mission KS: 2003.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. Gaussian 03. Revision C.02 Gaussian, Inc.; Wallingford CT: 2004.
Tamura M, Holbrook SR. J. Mol. Biol. 2002;320:455. PubMed
Hsiao C, Mohan S, Hershkovitz E, Tannenbaum A, Williams LD. Nucleic Acids Res. 2006;34:1481. PubMed PMC
Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. Proc. Natl. Acad. Sci. 2001;98:4899. PubMed PMC
Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, et al. J. Phys. Chem. B. 2000;104:7535.
Chou SH, Zhu LM, Reid BR. J. Mol. Biol. 1994;244:259. PubMed
Shepard W, Cruse WBT, Fourme R, de la Fortelle E, Prange T. Structure. 1998;6:849. PubMed
Spackova N, Berger I, Sponer J. J. Am. Chem. Soc. 2000;122:7564. PubMed
Zimmermann GR, Jenison RD, Wick CL, Simorre JP, Pardi A. Nat. Struct. Biol. 1997;4:644. PubMed
Leontis NB, Stombaugh J, Westhof E. Nucleic Acids Res. 2002;30:3497. PubMed PMC
Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. J. Biol. Struct. Dyn. 2009;26:819.
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, et al. Biophys. J. 2007;92:3817. PubMed PMC
Reblova K, Lankas F, Razga F, Krasovska MV, Koca J, et al. Biopolymers. 2006;82:504. PubMed
Besseova I, Otyepka M, Reblova K, Sponer J. Phys. Chem. Chem. Phys. 2009;11:10701. PubMed
Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, et al. J. Chem. Theory Comput. 2009;5:2514. PubMed
Mongan J, Case DA, McCammon JA. J. Comput. Chem. 2004;25:2038. PubMed
Khandogin J, Brooks CL. Biophys. J. 2005;89:141. PubMed PMC
Lee MS, Salsbury FR, Brooks CL. Prot. Struct. Func. Bioinf. 2004;56:738. PubMed
Meng Yilin, E. RA. J. Chem. Theory Comput. 2010 in press. PubMed
Cochrane JC, Lipchock SV, Smith KD, Strobel SA. Biochemistry. 2009;48:3239. PubMed PMC
Nam K, Gao JL, York DM. RNA. 2008;14:1501. PubMed PMC
Bevilacqua PC, Brown TS, Nakano S, Yajima R. Biopolymers. 2004;73:90. PubMed
Perreault DM, Anslyn EV. Angew. Chem. Int. Ed. 1997;36:432.
Zhou DM, Taira K. Chem. Rev. 1998;98:991. PubMed
Emilsson GM, Nakamura S, Roth A, Breaker RR. RNA. 2003;9:907. PubMed PMC
Breaker RR, Emilsson GM, Lazarev D, Nakamura S, Puskarz IJ, et al. RNA. 2003;9:949. PubMed PMC
Liu L, Cottrell JW, Scott LG, Fedor MJ. Nat. Chem. Biol. 2009;5:351. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage
Molecular mechanism of preQ1 riboswitch action: a molecular dynamics study