Protonation states of the key active site residues and structural dynamics of the glmS riboswitch as revealed by molecular dynamics

. 2010 Jul 08 ; 114 (26) : 8701-12.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20536206

Grantová podpora
R01 GM062357 NIGMS NIH HHS - United States
R01 GM062357-07 NIGMS NIH HHS - United States
R01 GM062357-08 NIGMS NIH HHS - United States
GM62357 NIGMS NIH HHS - United States

The glmS catalytic riboswitch is part of the 5'-untranslated region of mRNAs encoding glucosamine-6-phosphate (GlcN6P) synthetase (glmS) in numerous gram-positive bacteria. Binding of the cofactor GlcN6P induces site-specific self-cleavage of the RNA. However, the detailed reaction mechanism as well as the protonation state of the glmS reactive form still remains elusive. To probe the dominant protonation states of key active site residues, we carried out explicit solvent molecular dynamic simulations involving various protonation states of three crucial active site moieties observed in the available crystal structures: (i) guanine G40 (following the Thermoanaerobacter tengcongensis numbering), (ii) the GlcN6P amino/ammonium group, and (iii) the GlcN6P phosphate moiety. We found that a deprotonated G40(-) seems incompatible with the observed glmS active site architecture. Our data suggest that the canonical form of G40 plays a structural role by stabilizing an in-line attack conformation of the cleavage site A-1(2'-OH) nucleophile, rather than a more direct chemical role. In addition, we observe weakened cofactor binding upon protonation of the GlcN6P phosphate moiety, which explains the experimentally observed increase in K(m) with decreasing pH. Finally, we discuss a possible role of cofactor binding and its interaction with the G65 and G1 purines in structural stabilization of the A-1(2'-OH) in-line attack conformation. On the basis of the identified dominant protonation state of the reaction precursor, we propose a hypothesis of the self-cleavage mechanism in which A-1(2'-OH) is activated as a nucleophile by the G1(pro-R(p)) nonbridging oxygen of the scissile phosphate, whereas the ammonium group of GlcN6P acts as the general acid protonating the G1(O5') leaving group.

Zobrazit více v PubMed

Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. Cell. 2003;113:577. PubMed

Tucker BJ, Breaker RR. Curr. Opin. Struct. Biol. 2005;15:342. PubMed

Winkler WC, Breaker RR. Annu. Rev. Microbiol. 2005;59:487. PubMed

Henkin TM. Gen. Dev. 2008;22:3383. PubMed PMC

Coppins RL, Hall KB, Groisman EA. Curr. Opin. Microbiol. 2007;10:176. PubMed PMC

Winkler WC. Curr. Opin. Chem. Biol. 2005;9:594. PubMed

Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, et al. Proc. Natl. Acad. Sci. 2004;101:6421. PubMed PMC

Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Nature. 2004;428:281. PubMed

Milewski S. BBA. 2002;1597:173. PubMed

Batey RT, Gilbert SD, Montange RK. Nature. 2004;432:411. PubMed

Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, et al. Genome Biology. 2005;6 PubMed PMC

Grundy FJ, Henkin TM. Crit. Rev. Biochem. 2006;41:329. PubMed

Hampel KJ, Tinsley MM. Biochemistry. 2006;45:7861. PubMed

Fedor MJ. Annu. Rev. Biophys. 2009;38:271. PubMed

Tinsley RA, Furchak JRW, Walter NG. RNA. 2007;13:468. PubMed PMC

McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, et al. Chem. Biol. 2005;12:1221. PubMed

Collins JA, Irnov I, Baker S, Winkler WC. Gen. Dev. 2007;21:3356. PubMed PMC

Banas P, Rulisek L, Hanosova V, Svozil D, Walter NG, et al. J. Phys. Chem. B. 2008;112:11177. PubMed PMC

Bevilacqua PC, Yajima R. Curr. Opin. Chem. Biol. 2006;10:455. PubMed

Cochrane JC, Strobel SA. Acc. Chem. Res. 2008;41:1027. PubMed

Strobel SA, Cochrane JC. Curr. Opin. Chem. Biol. 2007;11:636. PubMed PMC

Lilley DMJ, Eckstein F. Ribozymes and RNA Catalysis. The Royal Society of Chemistry; Cambridge: 2008.

Walter NG. Mol. Cell. 2007;28:923. PubMed PMC

Roth A, Nahvi A, Lee M, Jona I, Breaker RR. RNA. 2006;12:607. PubMed PMC

Klein DJ, Been MD, Ferre-D'Amare AR. J. Am. Chem. Soc. 2007;129:14858. PubMed

Klein DJ, Ferre-D'Amare AR. Science. 2006;313:1752. PubMed

Klein DJ, Wilkinson SR, Been MD, Ferre-D'Amare AR. J. Mol. Biol. 2007;373:178. PubMed PMC

Cochrane JC, Lipchock SV, Strobel SA. Chem. Biol. 2007;14:95. PubMed PMC

Soukup GA. Nucleic Acids Res. 2006;34:968. PubMed PMC

Jansen JA, McCarthy TJ, Soukup GA, Soukup JK. Nat. Struct, Mol. Biol. 2006;13:517. PubMed

Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202. PubMed PMC

McDowell SE, Spackova N, Sponer J, Walter NG. Biopolymers. 2007;85:169. PubMed PMC

Auffinger P, Hashem Y. Curr. Opin. Struct. Biol. 2007;17:325. PubMed

Hall KB. Curr. Opin. Chem. Biol. 2008;12:612. PubMed PMC

Sponer J, Lankas F. Computational studies of RNA and DNA. Springer; 2006.

Cheatham TE. Curr. Opin. Struct. Biol. 2004;14:360. PubMed

Ditzler MA, Otyepka M, Sponer J, Walter NG. Acc. Chem. Res. 2010;42:40. PubMed PMC

Razga F, Koca J, Mokdad A, Sponer J. Nucleic Acids Res. 2007;35:4007. PubMed PMC

Almlof M, Ander M, Aqvist J. Biochemistry. 2007;46:200. PubMed

Villa A, Wöhnert J, Stock G. Nucleic Acids Res. 2009;37:4774. PubMed PMC

Lee TS, Lopez CS, Giambasu GM, Martick M, Scott WG, et al. J. Am. Chem. Soc. 2008;130:3053. PubMed PMC

Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, et al. Biophys. J. 2006;91:626. PubMed PMC

Reblova K, Spackova N, Stefl R, Csaszar K, Koca J, et al. Biophys. J. 2003;84:3564. PubMed PMC

Auffinger P, Bielecki L, Westhof E. J. Mol. Biol. 2004;335:555. PubMed

Lee TS, Giambasu GM, Sosa CP, Martick M, Scott WG, et al. J. Mol. Biol. 2009;388:195. PubMed PMC

Martick M, Lee TS, York DM, Scott WG. Chem. Biol. 2008;15:332. PubMed PMC

Rhodes MM, Reblova K, Sponer J, Walter NG. Proc. Natl. Acad. Sci. 2006;103:13380. PubMed PMC

Razga F, Koca J, Sponer J, Leontis NB. Biophys. J. 2005;88:3466. PubMed PMC

Ditzler MA, Sponer J, Walter NG. RNA. 2009;15:560. PubMed PMC

Csaszar K, Spackova N, Stefl R, Sponer J, Leontis NB. J. Mol. Biol. 2001;313:1073. PubMed

Lee TS, York DM. J. Am. Chem. Soc. 2008;130:7168. PubMed PMC

Nam KH, Gao JL, York DM. J. Am. Chem. Soc. 2008;130:4680. PubMed PMC

Trobro S, Aqvist J. Proc. Natl. Acad. Sci. 2005;102:12395. PubMed PMC

Trobro S, Aqvist J. Mol. Cell. 2007;27:758. PubMed

Krasovska MV, Sefcikova J, Spackova N, Sponer J, Walter NG. J. Mol. Biol. 2005;351:731. PubMed

Gresh N, Sponer JE, Spackova N, Leszczynski J, Sponer J. J. Phys. Chem. B. 2003;107:8669.

Case DA, Darden TA, T.E. Cheatham I, Simmerling CL, Wang J, et al. AMBER 9. University of California; San Francisco: 2006.

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, et al. J. Am. Chem. Soc. 1995;117:5179.

Wang JM, Cieplak P, Kollman PA. J. Comput. Chem. 2000;21:1049.

Cornell WD, Cieplak P, Bayly CI, Kollman PA. J. Am. Chem. Soc. 1993;115:9620.

Dennington RI, Keith T, Millam J, Eppinnett K, Hovell WL, et al. GaussView. Version 3.0 Semichem, Inc.; Shawnee Mission KS: 2003.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. Gaussian 03. Revision C.02 Gaussian, Inc.; Wallingford CT: 2004.

Tamura M, Holbrook SR. J. Mol. Biol. 2002;320:455. PubMed

Hsiao C, Mohan S, Hershkovitz E, Tannenbaum A, Williams LD. Nucleic Acids Res. 2006;34:1481. PubMed PMC

Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. Proc. Natl. Acad. Sci. 2001;98:4899. PubMed PMC

Sponer J, Sabat M, Gorb L, Leszczynski J, Lippert B, et al. J. Phys. Chem. B. 2000;104:7535.

Chou SH, Zhu LM, Reid BR. J. Mol. Biol. 1994;244:259. PubMed

Shepard W, Cruse WBT, Fourme R, de la Fortelle E, Prange T. Structure. 1998;6:849. PubMed

Spackova N, Berger I, Sponer J. J. Am. Chem. Soc. 2000;122:7564. PubMed

Zimmermann GR, Jenison RD, Wick CL, Simorre JP, Pardi A. Nat. Struct. Biol. 1997;4:644. PubMed

Leontis NB, Stombaugh J, Westhof E. Nucleic Acids Res. 2002;30:3497. PubMed PMC

Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. J. Biol. Struct. Dyn. 2009;26:819.

Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, et al. Biophys. J. 2007;92:3817. PubMed PMC

Reblova K, Lankas F, Razga F, Krasovska MV, Koca J, et al. Biopolymers. 2006;82:504. PubMed

Besseova I, Otyepka M, Reblova K, Sponer J. Phys. Chem. Chem. Phys. 2009;11:10701. PubMed

Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, et al. J. Chem. Theory Comput. 2009;5:2514. PubMed

Mongan J, Case DA, McCammon JA. J. Comput. Chem. 2004;25:2038. PubMed

Khandogin J, Brooks CL. Biophys. J. 2005;89:141. PubMed PMC

Lee MS, Salsbury FR, Brooks CL. Prot. Struct. Func. Bioinf. 2004;56:738. PubMed

Meng Yilin, E. RA. J. Chem. Theory Comput. 2010 in press. PubMed

Cochrane JC, Lipchock SV, Smith KD, Strobel SA. Biochemistry. 2009;48:3239. PubMed PMC

Nam K, Gao JL, York DM. RNA. 2008;14:1501. PubMed PMC

Bevilacqua PC, Brown TS, Nakano S, Yajima R. Biopolymers. 2004;73:90. PubMed

Perreault DM, Anslyn EV. Angew. Chem. Int. Ed. 1997;36:432.

Zhou DM, Taira K. Chem. Rev. 1998;98:991. PubMed

Emilsson GM, Nakamura S, Roth A, Breaker RR. RNA. 2003;9:907. PubMed PMC

Breaker RR, Emilsson GM, Lazarev D, Nakamura S, Puskarz IJ, et al. RNA. 2003;9:949. PubMed PMC

Liu L, Cottrell JW, Scott LG, Fedor MJ. Nat. Chem. Biol. 2009;5:351. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace