Elastic properties of ribosomal RNA building blocks: molecular dynamics of the GTPase-associated center rRNA
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GR067507
Wellcome Trust - United Kingdom
PubMed
17553840
PubMed Central
PMC1919483
DOI
10.1093/nar/gkm245
PII: gkm245
Knihovny.cz E-zdroje
- MeSH
- archeální RNA chemie MeSH
- Haloarcula marismortui genetika MeSH
- ionty chemie MeSH
- konformace nukleové kyseliny MeSH
- konzervovaná sekvence MeSH
- molekulární modely * MeSH
- molekulární sekvence - údaje MeSH
- párování bází MeSH
- počítačová simulace MeSH
- pohyb těles MeSH
- RNA ribozomální 23S chemie MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- archeální RNA MeSH
- ionty MeSH
- RNA ribozomální 23S MeSH
Explicit solvent molecular dynamics (MD) was used to describe the intrinsic flexibility of the helix 42-44 portion of the 23S rRNA (abbreviated as Kt-42+rGAC; kink-turn 42 and GTPase-associated center rRNA). The bottom part of this molecule consists of alternating rigid and flexible segments. The first flexible segment (Hinge1) is the highly anharmonic kink of Kt-42. The second one (Hinge2) is localized at the junction between helix 42 and helices 43/44. The rigid segments are the two arms of helix 42 flanking the kink. The whole molecule ends up with compact helices 43/44 (Head) which appear to be modestly compressed towards the subunit in the Haloarcula marismortui X-ray structure. Overall, the helix 42-44 rRNA is constructed as a sophisticated intrinsically flexible anisotropic molecular limb. The leading flexibility modes include bending at the hinges and twisting. The Head shows visible internal conformational plasticity, stemming from an intricate set of base pairing patterns including dynamical triads and tetrads. In summary, we demonstrate how rRNA building blocks with contrasting intrinsic flexibilities can form larger architectures with highly specific patterns of preferred low-energy motions and geometries.
Zobrazit více v PubMed
Ramakrishnan V. Ribosome structure and the mechanism of translation. Cell. 2002;108:557–572. PubMed
Moore PB, Steitz TA. The structural basis of large ribosomal subunit function. Annu. Rev. Biochem. 2003;72:813–850. PubMed
Frank J, Agrawal RK. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature. 2000;406:318–322. PubMed
Wimberly BT, Brodersen DE, Clemons WM, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan V. Structure of the 30S ribosomal subunit. Nature. 2000;407:327–339. PubMed
Ban N, Nissen P, Hansen J, Moore PB, Steitz TA. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000;289:905–920. PubMed
Ninio J. Multiple stages in codon-anticodon recognition: double-trigger mechanisms and geometric constraints. Biochimie. 2006;88:963–992. PubMed
Mitra K, Frank J. Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps. Annu. Rev. Biophys. Biomol. Struct. 2006;35:299–317. PubMed
Agrawal RK, Penczek P, Grassucci RA, Li YH, Leith A, Nierhaus KH, Frank J. Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science. 1996;271:1000–1002. PubMed
Noller HF, Yusupov MM, Yusupova GZ, Baucom A, Cate JHD. Translocation of tRNA during protein synthesis. FEBS J. 2002;514:11–16. PubMed
Rodnina MV, Savelsbergh A, Wintermeyer W. Dynamics of translation on the ribosome: molecular mechanics of translocation. FEMS Microbiol. Rev. 1999;23:317–333. PubMed
Matadeen R, Patwardhan A, Gowen B, Orlova EV, Pape T, Cuff M, Mueller F, Brimacombe R, van Heel M. The Escherichia coli large ribosomal subunit at 7.5 angstrom resolution. Structure. 1999;7:1575–1583. PubMed
Stark H, Rodnina MV, RinkeAppel J, Brimacombe R, Wintermeyer W, vanHeel M. Visualization of elongation factor Tu on the Escherichia coli ribosome. Nature. 1997;389:403–406. PubMed
Gabashvili IS, Agrawal RK, Spahn CMT, Grassucci RA, Svergun DI, Frank J, Penczek P. Solution structure of the E. coli 70S ribosome at 11.5 angstrom resolution. Cell. 2000;100:537–549. PubMed
Frank J, Verschoor A, Li YH, Zhu J, Lata RK, Radermacher M, Penczek P, Grassucci R, Agrawal RK, et al. A model of the translational apparatus based on a three-dimensional reconstruction of the Escherichia coli ribosome. Biochem. Cell. Biol. 1995;73:757–765. PubMed
Frank J. Electron microscopy of functional ribosome complexes. Biopolymers. 2003;68:223–233. PubMed
Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J. The cryo-EM structure of a translation initiation complex from. Escherichia coli. Cell. 2005;121:703–712. PubMed
Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF. Crystal structure of the ribosome at 5.5 angstrom resolution. Science. 2001;292:883–896. PubMed
Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Doudna Cate JH. Structures of the bacterial ribosome at 3.5 A resolution. Science. 2005;310:827–834. PubMed
Korostelev A, Trakhanov S, Laurberg M, Noller HF. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell. 2006;126:1065–1077. PubMed
Selmer M, Dunham CM, Murphy FV, IV, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V. Structure of the 70S ribosome complexed with mRNA and tRNA. Science. 2006;313:1935–1942. PubMed
Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J. Locking and unlocking of ribosomal motions. Cell. 2003;114:123–134. PubMed
Trylska J, Tozzini V, McCammon JA. Exploring global motions and correlations in the ribosome. Biophys. J. 2005;89:1455–1463. PubMed PMC
Tama F, Valle M, Frank J, Brooks CL. Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc. Natl Acad. Sci. USA. 2003;100:9319–9323. PubMed PMC
Agrawal RK, Linde J, Sengupta J, Nierhaus KH, Frank J. Localization of L11 protein on the ribosome and elucidation of its involvement in EF-G-dependent translocation. J. Mol. Biol. 2001;311:777–787. PubMed
Bocharov EV, Sobol AG, Pavlov KV, Korzhnev DM, Jaravine VA, Gudkov AT, Arseniev AS. From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J. Biol. Chem. 2004;279:17697–17706. PubMed
Gonzalo P, Reboud JP. The puzzling lateral flexible stalk of the ribosome. Biol. Cell. 2003;95:179–193. PubMed
Zhao Q, Ofverstedt LG, Skoglund U, Isaksson LA. Morphological variation of individual Escherichia coli 50S ribosomal subunits in situ, as revealed by cryo-electron tomography. Exp. Cell. Res. 2004;300:190–201. PubMed
Wilson KS, Nechifor R. Interactions of translation factor EF-G with the bacterial ribosome before and after mRNA translocation. J. Mol. Biol. 2004;337:15–30. PubMed
Wriggers W, Agrawal RK, Drew DL, McCammon A, Frank J. Domain motions of EF-G bound to the 70S ribosome: insights from a hand-shaking between multi-resolution structures. Biophys. J. 2000;79:1670–1678. PubMed PMC
Agrawal RK, Heagle AB, Penczek P, Grassucci RA, Frank J. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nature Struct. Biol. 1999;6:643–647. PubMed
Auffinger P, Westhof E. Simulations of the molecular dynamics of nucleic acids. Curr. Opin. Struct. Biol. 1998;8:227–236. PubMed
Reblova K, Spackova N, Stefl R, Csaszar K, Koca J, Leontis NB, Sponer J. Non-Watson-Crick basepairing and hydration in RNA motifs: Molecular dynamics of 5S rRNA loop. E. Biophys. J. 2003;84:3564–3582. PubMed PMC
Reblova K, Spackova N, Sponer JE, Koca J, Sponer J. Molecular dynamics simulations of RNA kissing-loop motifs reveal structural dynamics and formation of cation-binding pockets. Nucleic Acids Res. 2003;31:6942–6952. PubMed PMC
Reblova K, Spackova N, Koca J, Leontis NB, Sponer J. Long-residency hydration, cation binding and dynamics of Loop E/Helix IV rRNA - L25 protein complex. Biophys. J. 2004;87:3397–3412. PubMed PMC
Razga F, Koca J, Sponer J, Leontis NB. Hinge-like motions in RNA Kink-turns: the role of the second A-minor motif and nominally unpaired bases. Biophys. J. 2005;88:3466–3485. PubMed PMC
Reblova K, Lankas F, Razga F, Krasovska MV, Koca J, Sponer J. Structure, dynamics and elasticity of free 16S rRNA Helix 44 studied by molecular dynamics simulations. Biopolymers. 2006;82:504–520. PubMed
Spackova N, Sponer J. Molecular dynamics simulations of Sarcin-Ricin rRNA motif. Nucleic Acids Res. 2006;34:697–708. PubMed PMC
Cojocaru V, Klement R, Jovin TM. Loss of G-A base pairs is insufficient for achieving a large opening of U4 snRNA K-turn motif. Nucleic Acids Res. 2005;33:3435–3446. PubMed PMC
Sanbonmatsu KY, Joseph S, Tung CS. Simulating movement of tRNA into the ribosome during decoding. Proc. Natl Acad. Sci. USA. 2005;102:15854–15859. PubMed PMC
Li W, Ma BY, Shapiro BA. Binding interactions between the core central domain of 16S rRNA and the ribosomal protein S15 determined by molecular dynamics simulations. Nucleic Acids Res. 2003;31:629–638. PubMed PMC
Auffinger P, Bielecki L, Westhof E. Symmetric K+ and Mg2+ ion-binding sites in the 5 S rRNA loop E inferred from molecular dynamics simulations. J. Mol. Biol. 2004;335:555–571. PubMed
Auffinger P, Bielecki L, Westhof E. The Mg2+ binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations. Chem. Biol. 2003;10:551–561. PubMed
Crety T, Malliavin TE. The conformational landscape of the ribosomal protein S15 and its influence on protein interaction with 16S RNA. Biophys. J. 2007;92:2647–2665. PubMed PMC
Li W, Sengupta J, Rath BK, Frank J. Functional conformations of the L11-ribosomal RNA complex revealed by correlative analysis of cryo-EM and molecular dynamics simulations. RNA. 2006;12:1240–1253. PubMed PMC
McDowell SE, Spackova N, Sponer J, Walter NG. Molecular dynamics simulations of RNA: An in silico single molecule approach. Biopolymers. 2007;85:169–184. PubMed PMC
Klein DJ, Schmeing TM, Moore PB, Steitz TA. The kink-turn: a new RNA secondary structure motif. EMBO J. 2001;20:4214–4221. PubMed PMC
Razga F, Spackova N, Reblova K, Koca J, Leontis NB, Sponer J. Ribosomal RNA kink-turn motif - a flexible molecular hinge. J. Biomol. Struct. Dyn. 2004;22:183–193. PubMed
Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl Acad. Sci. USA. 2001;98:4899–4903. PubMed PMC
Razga F, Zacharias M, Reblova K, Koca J, Sponer J. RNA Kink-turns as molecular elbows: hydration, cation-binding and large-scale dynamics. Structure. 2006;14:825–835. PubMed
Frank J, Sengupta J, Gao H, Li W, Valle M, Zavialov A, Ehrenberg M. The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett. 2005;579:959–962. PubMed
Goody TA, Melcher SE, Norman DG, Lilley DMJ. The kink-turn motif in RNA is dimorphic, and metal ion-dependent. RNA. 2004;10:254–264. PubMed PMC
Turner B, Melcher SE, Wilson TJ, Norman DG, Lilley DMJ. Induced fit of RNA on binding the L7Ae protein to the kink-turn motif. RNA. 2005;11:1192–1200. PubMed PMC
Cojocaru V, Nottrott S, Klement R, Jovin TM. The snRNP 15.5K protein folds its cognate K-turn RNA: a combined theoretical and biochemical study. RNA. 2005;11:197–209. PubMed PMC
Leontis NB, Stombaugh J, Westhof E. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 2002;30:3497–3531. PubMed PMC
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, et al. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 1995;117:5179–5197.
Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Wang B, et al. AMBER 8. San Francisco: University of California; 2004.
Ross WS, Hardin CC. Ion-induced stabilization of the G-DNA quadruplex - free-energy perturbation studies. J. Am. Chem. Soc. 1994;116:6070–6080.
Darden T, York D, Pedersen L. Particle Mesh Ewald - an N.Log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092.
Humphrey W, Dalke A, Schulten K. VMD - visual molecular dynamics. J. Molec. Graph. 1996;14:33–38. PubMed
Berendsen HJC, van der Spoel D, van Drunen R. GROMACS: a message - passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995;91:43–56.
Amadei A, Linssen ABM, Berendsen HJC. Essential dynamics of proteins. Proteins - Struct. Funct. Gen. 1993;17:412–425. PubMed
Orozco M, Perez A, Noy A, Luque FJ. Theoretical methods for the simulation of nucleic acids. Chem. Soc. Rev. 2003;32:350–364. PubMed
Van Wynsberghe AW, Cui Q. Comparison of mode analyses at different resolutions applied to nucleic acid systems. Biophys. J. 2005;89:2939–2949. PubMed PMC
Suhre K, Sanejouand YH. ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res. 2004;32:W610–W614. PubMed PMC
Tama F. Normal mode analysis with simplified models to investigate the global dynamics of biological systems. Protein peptide lett. 2003;10:119–132. PubMed
Tirion MM. Large amplitudes elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 1996;77:1905–1908. PubMed
Wuyts J, Perriere G, Van De Peer Y. Nucleic Acids Res. 2004;32:D101–D103. PubMed PMC
Mokdad A, Leontis NB. Ribostral: an RNA 3D alignment analyzer and viewer based on basepair isostericities. Bioinformatics. 2006;22:2168–2170. PubMed PMC
Zhao Q, Nagaswamy U, Lee H, Xia YL, Huang HC, Gao XL, Fox GE. NMR structure and Mg2+ binding of an RNA segment that underlies the L7/L12 stalk in the E. coli 50S ribosomal subunit. Nucleic Acids Res. 2005;33:3145–3153. PubMed PMC
Sarver M, Zirbel C, Stombaugh J, Mokdad A, Leontis NB. J. Math. Biol. 2006. Finding local and composite recurrent structural motifs in RNA 3D structure. in press. PubMed PMC
Wuyts J, De Rijk P, van de Peer Y, Winkelmans T, De Wachter R. The European large subunit ribosomal RNA database. Nucleic Acids Res. 2001;29:175–177. PubMed PMC
Mears JA, Cannone JJ, Stagg SM, Gutell RR, Agrawal RK, Harvey SC. Modeling a minimal ribosome based on comparative sequence analysis. J. Mol. Biol. 2002;321:215–234. PubMed
Zacharias M. Comparison of molecular dynamics and harmonic mode calculations on RNA. Biopolymers. 2000;54:547–560. PubMed
Krasovska MV, Sefcikova J, Reblova K, Schneider B, Walter NG, Sponer J. Cations and hydration in catalytic RNA: Molecular dynamics of the Hepatitis Delta Virus ribozyme. Biophys. J. 2006;91:626–638. PubMed PMC
Lescoute A, Westhof E. The interaction networks of structured RNAs. Nucleic Acids Res. 2006;34:6587–6604. PubMed PMC
Sanbonmatsu KY. Alignment/misalignment hypothesis for tRNA selection by the ribosome. Biochimie. 2006;88:1075–1089. PubMed
Lescoute A, Westhof E. Topology of three-way junctions in folded RNAs. RNA. 2006;12:83–93. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Structure and mechanical properties of the ribosomal L1 stalk three-way junction