Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
R15 GM055898
NIGMS NIH HHS - United States
2R15 GM55898
NIGMS NIH HHS - United States
3R15 GM55898
NIGMS NIH HHS - United States
PubMed
15339800
PubMed Central
PMC1304806
DOI
10.1529/biophysj.104.047126
PII: S0006-3495(04)73805-9
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA chemie MeSH
- chemické modely * MeSH
- Escherichia coli chemie MeSH
- kationty MeSH
- konformace nukleové kyseliny MeSH
- konformace proteinů MeSH
- molekulární modely * MeSH
- multiproteinové komplexy chemie MeSH
- počítačová simulace MeSH
- pohyb těles MeSH
- ribozomální proteiny chemie MeSH
- RNA ribozomální chemie MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriální RNA MeSH
- kationty MeSH
- multiproteinové komplexy MeSH
- ribosomal protein L25 MeSH Prohlížeč
- ribozomální proteiny MeSH
- RNA ribozomální MeSH
- voda MeSH
Molecular dynamics simulations of RNA-protein complex between Escherichia coli loop E/helix IV (LE/HeIV) rRNA and L25 protein reveal a qualitative agreement between the experimental and simulated structures. The major groove of LE is a prominent rRNA cation-binding site. Divalent cations rigidify the LE major groove geometry whereas in the absence of divalent cations LE extensively interacts with monovalent cations via inner-shell binding. The HeIV region shows bistability of its major groove explaining the observed differences between x-ray and NMR structures. In agreement with the experiments, the simulations suggest that helix-alpha1 of L25 is the least stable part of the protein. Inclusion of Mg2+ cations into the simulations causes perturbation of basepairing at the LE/HeIV junction, which does not, however, affect the protein binding. The rRNA-protein complex is mediated by a number of highly specific hydration sites with long-residing water molecules and two of them are bound throughout the entire 24-ns simulation. Long-residing water molecules are seen also outside the RNA-protein contact areas with water-binding times substantially enhanced compared to simulations of free RNA. Long-residency hydration sites thus represent important elements of the three-dimensional structure of rRNA.
Zobrazit více v PubMed
Agalarov, S. C., G. S. Prasad, P. M. Funke, C. D. Stout, and J. R. Williamson. 2000. Structure of the S15,S18-rRNA complex: assembly of the 30S ribosome central domain. Science. 288:107–112. PubMed
Auffinger, P., L. Bielecki, and E. Westhof. 2003. The Mg2+ binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations. Chem. Biol. 10:551–561. PubMed
Auffinger, P., L. Bielecki, and E. Westhof. 2004a. Symetric K+ and Mg2+ ion-binding sites in the rRNA loop E inferred from molecular dynamics simulations. J. Mol. Biol. 335:555–571. PubMed
Auffinger, P., L. Bielecki, and E. Westhof. 2004b. Anion binding to nucleic acids. Structure. 12:379–388. PubMed
Auffinger, P., and E. Westhof. 1998. Simulations of the molecular dynamics of nucleic acids. Curr. Opin. Struct. Biol. 8:227–236. PubMed
Auffinger, P., and E. Westhof. 1999. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J. Mol. Biol. 292:467–483. PubMed
Ban, N., P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 289:905–920. PubMed
Beaurain, F., and M. Laguerre. 2003. MD studies of the DIS/DIS kissing complex solution and x-ray structures. Oligonucleotides. 13:501–514. PubMed
Brandl, M., M. Meyer, and J. Suhnel. 2000. Water-mediated base pairs in RNA. A quantum-chemical study. J. Phys. Chem. 104:11177–11187.
Cheatham III, T. E., and M. A. Young. 2000. Molecular dynamics simulation of nucleic acids: successes, limitations, and promise. Biopolymers. 56:232–256. PubMed
Cornell, W. D., P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, Jr., D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. 1995. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic molecules. J. Am. Chem. Soc. 117:5179–5197.
Correll, C. C., B. Freeborn, P. B. Moore, and T. A. Steitz. 1997. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 91:705–712. PubMed
Csaszar, K., N. Spackova, R. Stefl, J. Sponer, and N. B. Leontis. 2001. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: The role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding. J. Mol. Biol. 313:1073–1091. PubMed
Ennifar, E., P. Walter, and P. Dumas. 2003. A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. Nucleic Acids Res. 31:2671–2682. PubMed PMC
Ferrin, T. E., C. C. Huang, L. E. Jarvis, and R. Langridge. 1988. The MIDAS display system. J. Mol. Graph. 6:13–27.
Gresh, N., J. E. Sponer, N. Spackova, J. Leszczynski, and J. Sponer. 2003. Theoretical study of binding of hydrated Zn(II) and Mg(II) cations to 5′-guanosine monophosphate. Toward polarizable molecular mechanics for DNA and RNA. J. Phys. Chem. B. 107:8669–8681.
Guo, J. X., and W. H. Gmeiner. 2001. Molecular dynamics simulation of the human U2B″ protein complex with U2 snRNA hairpin IV in aqueous solution. Biophys. J. 81:630–642. PubMed PMC
Harms, J., F. Schluenzen, R. Zarivach, A. Bashan, S. Gat, I. Agmon, H. Bartels, F. Franceschi, and A. Yonath. 2001. High resolution structure of the large ribosomal subunit from a mesophilic Eubacterium. Cell. 107:679–688. PubMed
Harvey, S. C., R. K. Z. Tan, and T. E. Cheatham, Iii. 1998. The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J. Comput. Chem. 19:726–740.
Hermann, T., P. Auffinger, and E. Westhof. 1998. Molecular dynamics investigations of hammerhead ribozyme RNA. Eur. Biophys. J. 27:153–165. PubMed
Hermann, T., and D. J. Patel. 1999. Stitching together RNA tertiary architectures. J. Mol. Biol. 294:829–849. PubMed
Humphrey, W., A. Dalke, and K. Schulten. 1996. VMD - Visual molecular dynamics. J. Mol. Graph. 14:33–38. PubMed
Kochoyan, M., and J. L. Leroy. 1995. Hydration and solution structure of nucleic-acids. Curr. Opin. Struct. Biol. 5:329–333. PubMed
Leontis, N. B., J. Stombaugh, and E. Westhof. 2002. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Res. 30:3497–3531. PubMed PMC
Leontis, N. B., and E. Westhof. 1998a. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA. 4:1134–1153. PubMed PMC
Leontis, N. B., and E. Westhof. 1998b. Conserved geometrical base-pairing patterns in RNA. Q. Rev. Biophys. 31:399–455. PubMed
Leontis, N. B., and E. Westhof. 2003. Analysis of RNA motifs. Curr. Opin. Struct. Biol. 13:300–308. PubMed
Lu, M., and T. A. Steitz. 2000. Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8-angstrom resolution. Proc. Natl. Acad. Sci. USA. 97:2023–2028. PubMed PMC
Moore, P. B. 1999. Structural motifs in RNA. Annu. Rev. Biochem. 68:287–300. PubMed
Nagan, M. C., S. S. Kerimo, K. Musier-Forsyth, and C. J. Cramer. 1999. Wild-type RNA microhelix(Ala) and 3:70 variants: molecular dynamics analysis of local helical structure and tightly bound water. J. Am. Chem. Soc. 121:7310–7317.
Nevskaya, N., S. Tishchenko, R. Fedorov, S. Al-Karadaghi, A. Liljas, A. Kraft, W. Piendl, M. Garber, and S. Nikonov. 2000. Archaeal ribosomal protein L1: the structure provides new insights into RNA binding of the L1 protein family. Structure. 8:363–371. PubMed
Nikulin, A., I. Eliseikina, S. Tishchenko, N. Nevskaya, N. Davydova, O. Platonova, W. Piendl, M. Selmer, A. Liljas, D. Drygin, R. Zimmermann, M. Garber, and S. Nikonov. 2003. Structure of the L1 protuberance in the ribosome. Nat. Struct. Biol. 10:104–108. PubMed
Norberg, J., and L. Nilsson. 2002. Molecular dynamics applied to nucleic acids. Acc. Chem. Res. 35:465–472. PubMed
Orozco, M., A. Perez, A. Noy, and F. J. Luque. 2003. Theoretical methods for the simulation of nucleic acids. Chem. Soc. Rev. 32:350–364. PubMed
Pearlman, D. A., D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham III, and S. DeBolt. 1995. AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecule. Comput. Phys. Commun. 91:1–41.
Perederina, A., N. Nevskaya, O. Nikonov, A. Nikulin, P. Dumas, M. Yao, I. Tanaka, M. Garber, G. Gongadze, and S. Nikonov. 2002. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex. RNA. 8:1548–1557. PubMed PMC
Reblova, K., N. Spackova, J. E. Sponer, J. Koca, and J. Sponer. 2003a. Molecular dynamics simulations of RNA kissing-loop motifs reveal structural dynamics and formation of cation-binding pockets. Nucleic Acids Res. 31:6942–6952. PubMed PMC
Reblova, K., N. Spackova, R. Stefl, K. Csaszar, J. Koca, N. B. Leontis, and J. Sponer. 2003b. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E. Biophys. J. 84:3564–3582. PubMed PMC
Ross, W. S., and C. C. Hardin. 1994. Ion-induced stabilization of the G-DNA quadruplex: free-energy perturbation studies. J. Am. Chem. Soc. 116:6070–6080.
Rulisek, L., and J. Sponer. 2003. Outer-shell and inner-shell coordination of phosphate group to hydrated metal ions (Mg2+, Cu2+, Zn2+, Cd2+) in the presence and absence of nucleobase. The role of nonelectrostatic effects. J. Phys. Chem. B. 107:1913–1923.
Sarzynska, J., T. Kulinski, and L. Nilsson. 2000. Conformational dynamics of a 5S rRNA hairpin domain containing loop D and a single nucleotide bulge. Biophys. J. 79:1213–1227. PubMed PMC
Schneider, C., M. Brandl, and J. Suhnel. 2001. Molecular dynamics simulation reveals conformational switching of water-mediated uracil-cytosine base-pairs in an RNA duplex. J. Mol. Biol. 305:659–667. PubMed
Spackova, N., I. Berger, and J. Sponer. 2000. Nanosecond molecular dynamics of zipper-like DNA duplex structures containing sheared G.A mismatch pairs. J. Am. Chem. Soc. 122:7564–7572.
Spackova, N., T. E. Cheatham III, F. Ryjacek, F. Lankas, L. V. Meervelt, P. Hobza, and J. Sponer. 2003. Molecular dynamics simulations and thermodynamics analysis of DNA-drug complexes. Minor groove binding between 4′,6-diamidino-2-phenylindole (DAPI) and DNA duplexes in solution. J. Am. Chem. Soc. 125:1759–1769. PubMed
Sponer, J., H. A. Gabb, J. Leszczynski, and P. Hobza. 1997. Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study. Biophys. J. 73:76–87. PubMed PMC
Stoldt, M., J. Wohnert, M. Gorlach, and L. R. Brown. 1998. The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases. EMBO J. 17:6377–6384. PubMed PMC
Stoldt, M., J. Wohnert, O. Ohlenschlager, M. Gorlach, and L. R. Brown. 1999. The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition. EMBO J. 18:6508–6521. PubMed PMC
Tobias, D. J., P. Jungwirth, and M. Parrinello. 2001. Surface solvation of halogen anions in water clusters: an ab initio molecular dynamics study of the Cl−(H2O)6 complex. J. Chem. Phys. 114:7036–7044.
Vallurupalli, P., and P. B. Moore. 2003. The solution structure of the loop E region of the 5 S rRNA from spinach chloroplasts. J. Mol. Biol. 325:843–856. PubMed
van der Spoel, D., A. R. van Buuren, E. Apol, P. J. Maulenhoff, P. D. Tieleman, A. L. T. M. Sijbers, B. Hess, K. A. Feenstra, E. Lindhal, R. V. Drunen, and H. J. C. Berendsen. 1999. Gromacs User Manual Version 2.0. Groningen, The Netherlands.
Wimberly, B. T., D. E. Brodersen, W. M. Clemons, R. J. Morgan-Warren, A. P. Carter, C. Vonrhein, T. Hartsch, and V. Ramakrishnan. 2000. Structure of the 30S ribosomal subunit. Nature. 407:327–339. PubMed
Wimberly, B. T., R. Guymon, J. P. McCutcheon, S. W. White, and V. Ramakrishnan. 1999. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell. 97:491–502. PubMed
York, D. M., T. A. Darden, and L. G. Pedersen. 1993. The effect of long-range electrostatic interactions in simulations of macromolecular crystal: a comparison of the Ewald and truncated list methods. J. Chem. Phys. 99:8345–8348.
Yusupov, M. M., G. Z. Yusupova, A. Baucom, K. Lieberman, T. N. Earnest, J. H. D. Cate, and H. F. Noller. 2001. Crystal structure of the ribosome at 5.5 angstrom resolution. Science. 292:883–896. PubMed
Zacharias, M. 2000. Simulation of the structure and dynamics of nonhelical RNA motifs. Curr. Opin. Struct. Biol. 10:311–317. PubMed
Zhou, R., B. J. Berne, and R. Germain. 2001. The free energy landscape for beta hairpin folding in explicit water. Proc. Natl. Acad. Sci. USA. 18:14931–14936. PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme
Molecular dynamics simulations of sarcin-ricin rRNA motif