Base-base and deoxyribose-base stacking interactions in B-DNA and Z-DNA: a quantum-chemical study

. 1997 Jul ; 73 (1) : 76-87.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid09199773

Grantová podpora
332090 PHS HHS - United States

Odkazy

PubMed 9199773
PubMed Central PMC1180910
DOI 10.1016/s0006-3495(97)78049-4
PII: S0006-3495(97)78049-4
Knihovny.cz E-zdroje

Base-stacking interactions in canonical and crystal B-DNA and in Z-DNA steps are studied using the ab initio quantum-chemical method with inclusion of electron correlation. The stacking energies in canonical B-DNA base-pair steps vary from -9.5 kcal/mol (GG) to -13.2 kcal/mol (GC). The many-body nonadditivity term, although rather small in absolute value, influences the sequence dependence of stacking energy. The base-stacking energies calculated for CGC and a hypothetical TAT sequence in Z-configuration are similar to those in B-DNA. Comparison with older quantum-chemical studies shows that they do not provide even a qualitatively correct description of base stacking. We also evaluate the base-(deoxy)ribose stacking geometry that occurs in Z-DNA and in nucleotides linked by 2',5'-phosphodiester bonds. Although the molecular orbital analysis does not rule out the charge-transfer n-pi* interaction of the sugar 04' with the aromatic base, the base-sugar contact is stabilized by dispersion energy similar to that of stacked bases. The stabilization amounts to almost 4 kcal/mol and is thus comparable to that afforded by normal base-base stacking. This enhancement of the total stacking interaction could contribute to the propensity of short d(CG)n sequences to adopt the Z-conformation.

Zobrazit více v PubMed

J Theor Biol. 1976 Jul 7;59(2):303-18 PubMed

Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11636-40 PubMed

Nature. 1980 Feb 21;283(5749):743-5 PubMed

Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:229-41 PubMed

Nucleic Acids Res. 1983 Jul 25;11(14):4867-78 PubMed

J Mol Biol. 1984 May 25;175(3):419-23 PubMed

J Mol Biol. 1986 Dec 20;192(4):907-18 PubMed

Science. 1987 Nov 6;238(4828):773-7 PubMed

J Theor Biol. 1988 Feb 7;130(3):327-35 PubMed

J Biol Chem. 1989 May 15;264(14):7921-35 PubMed

Biochemistry. 1989 Aug 8;28(16):6642-51 PubMed

Science. 1989 Oct 20;246(4928):358-63 PubMed

FEBS Lett. 1989 Nov 6;257(2):223-7 PubMed

J Mol Biol. 1989 Nov 20;210(2):369-81 PubMed

J Biomol Struct Dyn. 1986 Apr;3(5):989-1014 PubMed

J Biomol Struct Dyn. 1988 Aug;6(1):63-91 PubMed

Proc Natl Acad Sci U S A. 1990 Jun;87(12):4630-4 PubMed

J Biomol Struct Dyn. 1990 Jun;7(6):1211-20 PubMed

Biopolymers. 1990 Jul-Aug 5;29(8-9):1193-209 PubMed

Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):180-4 PubMed

J Mol Biol. 1995 Mar 17;247(1):34-48 PubMed

Biochemistry. 1995 Mar 28;34(12):4125-32 PubMed

J Biomol Struct Dyn. 1994 Dec;12(3):671-80 PubMed

J Mol Biol. 1995 Jun 16;249(4):772-84 PubMed

J Biomol Struct Dyn. 1995 Apr;12(5):1055-62 PubMed

Curr Opin Struct Biol. 1995 Apr;5(2):205-10 PubMed

Nat Struct Biol. 1995 May;2(5):416-25 PubMed

Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):780-4 PubMed

Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3664-8 PubMed

J Mol Graph. 1996 Feb;14(1):6-11, 23-4 PubMed

Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12116-21 PubMed

J Mol Biol. 1962 Jun;4:500-17 PubMed

Nature. 1979 Dec 13;282(5740):680-6 PubMed

J Mol Biol. 1991 Jan 5;217(1):177-99 PubMed

J Mol Biol. 1991 Oct 5;221(3):761-4 PubMed

Biopolymers. 1992 Feb;32(2):145-59 PubMed

Biophys J. 1992 Sep;63(3):751-9 PubMed

J Biomol Struct Dyn. 1993 Feb;10(4):727-45 PubMed

Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3339-42 PubMed

J Mol Biol. 1993 Apr 5;230(3):1025-54 PubMed

J Biomol Struct Dyn. 1993 Aug;11(1):27-41 PubMed

J Biomol Struct Dyn. 1993 Oct;11(2):277-92 PubMed

Biophys Chem. 1994 May;50(1-2):33-45 PubMed

Ann N Y Acad Sci. 1994 Jul 29;726:1-16; discussion 16-7 PubMed

Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9980-4 PubMed

Proc Natl Acad Sci U S A. 1978 Jan;75(1):256-60 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Lone pair-π interactions in biological systems: occurrence, function, and physical origin

. 2017 Dec ; 46 (8) : 729-737. [epub] 20170502

Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations

. 2013 Jul 03 ; 135 (26) : 9785-96. [epub] 20130619

Quantum chemical studies of nucleic acids: can we construct a bridge to the RNA structural biology and bioinformatics communities?

. 2010 Dec 09 ; 114 (48) : 15723-41. [epub] 20101104

Cations and hydration in catalytic RNA: molecular dynamics of the hepatitis delta virus ribozyme

. 2006 Jul 15 ; 91 (2) : 626-38. [epub] 20060414

Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex

. 2004 Nov ; 87 (5) : 3397-412. [epub] 20040831

Critical effect of the N2 amino group on structure, dynamics, and elasticity of DNA polypurine tracts

. 2002 May ; 82 (5) : 2592-609.

Local conformational variations observed in B-DNA crystals do not improve base stacking: computational analysis of base stacking in a d(CATGGGCCCATG)(2) B<-->A intermediate crystal structure

. 2000 Dec 15 ; 28 (24) : 4893-902.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace