Relative stability of different DNA guanine quadruplex stem topologies derived using large-scale quantum-chemical computations
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 GM081411
NIGMS NIH HHS - United States
R01-GM081411
NIGMS NIH HHS - United States
PubMed
23742743
PubMed Central
PMC3775466
DOI
10.1021/ja402525c
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- G-kvadruplexy * MeSH
- guanin chemie MeSH
- kvantová teorie * MeSH
- molekulární modely MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- DNA MeSH
- guanin MeSH
We provide theoretical predictions of the intrinsic stability of different arrangements of guanine quadruplex (G-DNA) stems. Most computational studies of nucleic acids have applied Molecular Mechanics (MM) approaches using simple pairwise-additive force fields. The principle limitation of such calculations is the highly approximate nature of the force fields. In this study, we for the first time apply accurate QM computations (DFT-D3 with large atomic orbital basis sets) to essentially complete DNA building blocks, seven different folds of the cation-stabilized two-quartet G-DNA stem, each having more than 250 atoms. The solvent effects are approximated by COSMO continuum solvent. We reveal sizable differences between MM and QM descriptions of relative energies of different G-DNA stems, which apparently reflect approximations of the DNA force field. Using the QM energy data, we propose correction to earlier free energy estimates of relative stabilities of different parallel, hybrid, and antiparallel G-stem folds based on classical simulations. The new energy ranking visibly improves the agreement between theory and experiment. We predict the 5'-anti-anti-3' GpG dinucleotide step to be the most stable one, closely followed by the 5'-syn-anti-3' step. The results are in good agreement with known experimental structures of 2-, 3-, and 4-quartet G-DNA stems. Besides providing specific results for G-DNA, our study highlights basic limitations of force field modeling of nucleic acids. Although QM computations have their own limitations, mainly the lack of conformational sampling and the approximate description of the solvent, they can substantially improve the quality of calculations currently relying exclusively on force fields.
Zobrazit více v PubMed
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. J. Am. Chem. Soc. 1995;117:5179–5197.
Foloppe N, MacKerell AD. J. Comput. Chem. 2000;21:86–104.
Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L, MacKerell AD. J. Chem. Theory Comput. 2012;8:348–362. PubMed PMC
Krepl M, Zgarbova M, Stadlbauer P, Otyepka M, Banas P, Koca J, Cheatham III TE, Jurecka P, Sponer J. J. Chem. Theory Comput. 2012;8:2506–2520. PubMed PMC
Mackerell AD. J. Comput. Chem. 2004;25:1584–1604. PubMed
Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE, Jurecka P. J. Chem. Theory Comput. 2011;7:2886–2902. PubMed PMC
Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD. J. Comput. Chem. 2011;32:1929–1943. PubMed PMC
Cheatham TE. Curr. Opin. Struct. Biol. 2004;14:360–367. PubMed
Ditzler MA, Otyepka M, Sponer J, Walter NG. Accounts Chem. Res. 2010;43:40–47. PubMed PMC
Orozco M, Noy A, Perez A. Curr. Opin. Struct. Biol. 2008;18:185–193. PubMed
Sponer J, Cang X, Cheatham TE., III Methods. 2012;57:25–39. PubMed PMC
Perez A, Luque FJ, Orozco M. Accounts Chem. Res. 2012;45:196–205. PubMed
Banas P, Hollas D, Zgarbova M, Jurecka P, Orozco M, Cheatham TE, III, Sponer J, Otyepka M. J. Chem. Theory Comput. 2010;6:3836–3849. PubMed PMC
Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, III, Laughton CA, Orozco M. Biophys. J. 2007;92:3817–3829. PubMed PMC
Banas P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods. 2009;49:202–216. PubMed PMC
Sponer J, Leszczynski J, Hobza P. Biopolymers. 2001;61:3–31. PubMed
Sponer J, Sponer JE, Petrov AI, Leontis NB. J. Phys. Chem. B. 2010;114:15723–15741. PubMed PMC
Mladek A, Sponer JE, Jurecka P, Banas P, Otyepka M, Svozil D, Sponer J. J. Chem. Theory Comput. 2010;6:3817–3835.
Sponer J, Leszczynski J, Hobza P. J. Phys. Chem. 1996;100:5590–5596.
Parker TM, Hohenstein EG, Parrish RM, Hud NV, Sherrill CD. J. Am. Chem. Soc. 2012;135:1306–1316. PubMed
Gresh N, Pullman B. Int. J. Quantum Chem. 1986;12:49–56.
Gu JD, Leszczynski J. J. Phys. Chem. A. 2000;104:6308–6313.
Meyer M, Steinke T, Brandl M, Suhnel J. J. Comput. Chem. 2001;22:109–124.
Gu JD, Leszczynski J. J. Phys. Chem. A. 2002;106:529–532.
Louit G, Hocquet A, Ghomi M, Meyer M, Suhnel J. Phys. Chem. Commun. 2003;6:1–5.
van Mourik T, Dingley AJ. Chem.-Eur. J. 2005;11:6064–6079. PubMed
Guerra CF, Zijlstra H, Paragi G, Bickelhaupt FM. Chem.-Eur. J. 2011;17:12612–12622. PubMed
Lech CJ, Heddi B, Phan AT. Nucleic Acids Res. 2013;41:2034–2046. PubMed PMC
Sponer J, Mokdad A, Sponer JE, Spackova N, Leszczynski J, Leontis NB. J. Mol. Biol. 2003;330:967–978. PubMed
Vlieghe D, Sponer J, Van Meervelt L. Biochemistry. 1999;38:16443–16451. PubMed
Mlynsky V, Banas P, Walter NG, Sponer J, Otyepka M. J. Phys. Chem. B. 2011;115:13911–13924. PubMed PMC
Nam KH, Gaot JL, York DM. J. Am. Chem. Soc. 2008;130:4680–4691. PubMed PMC
Trobro S, Aqvist J. Proc. Natl. Acad. Sci. U. S. A. 2005;102:12395–12400. PubMed PMC
Cang XH, Sponer J, Cheatham TE., III Nucleic Acids Res. 2011;39:4499–4512. PubMed PMC
Grimme S. WIREs Comput. Mol. Sci. 2011;1:211–228.
Jurecka P, Cerny J, Hobza P, Salahub DR. J. Comput. Chem. 2007;28:555–569. PubMed
Klimes J, Michaelides A. J. Chem. Phys. 2012;137:120901–120912. PubMed
Zhao Y, Truhlar DG. Accounts Chem. Res. 2008;41:157–167. PubMed
Svozil D, Hobza P, Sponer J. J. Phys. Chem. B. 2010;114:1191–1203. PubMed
Sponer J, Mladek A, Sponer JE, Svozil D, Zgarbova M, Banas P, Jurecka P, Otyepka M. Phys. Chem. Chem. Phys. 2012;14:15257–15277. PubMed
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Nucleic Acids Res. 2006;34:5402–5415. PubMed PMC
Lane AN, Chaires JB, Gray RD, Trent JO. Nucleic Acids Res. 2008;36:5482–5515. PubMed PMC
Neidle S. Curr. Opin. Struct. Biol. 2009;19:239–250. PubMed
Davis JT. Angew. Chem. Int. Edit. 2004;43:668–698. PubMed
De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL. Biochimie. 2008;90:131–155. PubMed
Mergny JL, Mailliet P, Lavelle F, Riou JF, Laoui A, Helene C. Anti-Cancer Drug Des. 1999;14:327–339. PubMed
Neidle S, Parkinson GN. Curr. Opin. Struct. Biol. 2003;13:275–283. PubMed
Li J, Correia JJ, Wang L, Trent JO, Chaires JB. Nucleic Acids Res. 2005;33:4649–4659. PubMed PMC
Balasubramanian S, Hurley LH, Neidle S. Nat. Rev. Drug Discov. 2011;10:261–275. PubMed PMC
Qin Y, Hurley LH. Biochimie. 2008;90:1149–1171. PubMed PMC
Ambrus A, Chen D, Dai JX, Bialis T, Jones RA, Yang DZ. Nucleic Acids Res. 2006;34:2723–2735. PubMed PMC
Crnugelj M, Sket P, Plavec J. J. Am. Chem. Soc. 2003;125:7866–7871. PubMed
Dai JX, Carver M, Yang DZ. Biochimie. 2008;90:1172–1183. PubMed PMC
Phan AT, Kuryavyi V, Patel DJ. Curr. Opin. Struct. Biol. 2006;16:288–298. PubMed PMC
Silva MW. Chem.-Eur. J. 2007;13:9738–9745. PubMed
Cang XH, Sponer J, Cheatham TE., III J. Am. Chem. Soc. 2011;133:14270–14279. PubMed PMC
Collie GW, Haider SM, Neidle S, Parkinson GN. Nucleic Acids Res. 2010;38:5569–5580. PubMed PMC
Reshetnikov RV, Sponer J, Rassokhina OI, Kopylov AM, Tsvetkov PO, Makarov AA, Golovin AV. Nucleic Acids Res. 2011;39:9789–9802. PubMed PMC
Cavallari M, Calzolari A, Garbesi A, Di Felice R. J. Phys. Chem. B. 2006;110:26337–26348. PubMed
Fadrna E, Spackova N, Sarzynska J, Koca J, Orozco M, Cheatham TE, Kulinski T, Sponer J. J. Chem. Theory Comput. 2009;5:2514–2530. PubMed
Haider SM, Patel JS, Poojari CS, Neidle S. J. Mol. Biol. 2010;400:1078–1098. PubMed
Hazel P, Parkinson GN, Neidle S. Nucleic Acids Res. 2006;34:2117–2127. PubMed PMC
Pagano B, Mattia CA, Cavallo L, Uesugi S, Giancola C, Fraternali F. J. Phys. Chem. B. 2008;112:12115–12123. PubMed
Rueda M, Luque FJ, Orozco M. J. Am. Chem. Soc. 2006;128:3608–3619. PubMed
Akhshi P, Acton G, Wu G. J. Phys. Chem. B. 2012;116:9363–9370. PubMed
Cavallari M, Garbesi A, Di Felice R. J. Phys. Chem. B. 2009;113:13152–13160. PubMed
Haider S, Parkinson GN, Neidle S. Biophys. J. 2008;95:296–311. PubMed PMC
Mashimo T, Yagi H, Sannohe Y, Rajendran A, Sugiyama H. J. Am. Chem. Soc. 2010;132:14910–14918. PubMed
Petraccone L, Spink C, Trent JO, Garbett NC, Mekmaysy CS, Giancola C, Chaires JB. J. Am. Chem. Soc. 2011;133:20951–20961. PubMed PMC
Haider S, Neidle S. 2008;Vol. 608:17–37. PubMed
Han HY, Langley DR, Rangan A, Hurley LH. J. Am. Chem. Soc. 2001;123:8902–8913. PubMed
Petraccone L, Garbett NC, Chaires JB, Trent JO. Biopolymers. 2010;93:533–548. PubMed PMC
Grimme S, Antony J, Ehrlich S, Krieg H. J. Chem. Phys. 2010;132:154104–154122. PubMed
Grimme S, Ehrlich S, Goerigk L. J. Comput. Chem. 2011;32:1456–1465. PubMed
Klamt A. WIREs Comput. Mol. Sci. 2011;1:699–709.
Klamt A, Schuurmann G. J. Chem. Soc.-Perkin Trans. 1993;2:799–805.
Svozil D, Kalina J, Omelka M, Schneider B. Nucleic Acids Res. 2008;36:3690–3706. PubMed PMC
Phillips K, Dauter Z, Murchie AIH, Lilley DMJ, Luisi B. J. Mol. Biol. 1997;273:171–182. PubMed
Haider S, Parkinson GN, Neidle S. J. Mol. Biol. 2002;320:189–200. PubMed
Schultze P, Macaya RF, Feigon J. J. Mol. Biol. 1994;235:1532–1547. PubMed
Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ. J. Am. Chem. Soc. 2006;128:9963–9970. PubMed PMC
Hazel P, Parkinson GN, Neidle S. J. Am. Chem. Soc. 2006;128:5480–5487. PubMed
Clark GR, Pytel PD, Squire CJ. Nucleic Acids Res. 2012;40:5731–5738. PubMed PMC
Ahlrichs R, Bar M, Haser M, Horn H, Kolmel C. Chem. Phys. Lett. 1989;162:165–169.
Staroverov VN, Scuseria GE, Tao JM, Perdew JP. J. Chem. Phys. 2003;119:12129–12137.
Zhao Y, Truhlar DG. J. Phys. Chem. A. 2005;109:5656–5667. PubMed
Schafer A, Huber C, Ahlrichs R. J. Chem. Phys. 1994;100:5829–5835.
Weigend F, Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297–3305. PubMed
Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R. Chem. Phys. Lett. 1995;240:283–289.
Eichkorn K, Weigend F, Treutler O, Ahlrichs R. Theor. Chem. Acc. 1997;97:119–124.
Weigend F, Kohn A, Hattig C. J. Chem. Phys. 2002;116:3175–3183.
Treutler O, Ahlrichs R. J. Chem. Phys. 1995;102:346–354.
Goerigk L, Grimme S. Phys. Chem. Chem. Phys. 2011;13:6670–6688. PubMed
Case DA, Cheatham TE, III, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ. J. Comput. Chem. 2005;26:1668–1688. PubMed PMC
Dang LX, Kollman PA. J. Phys. Chem. 1995;99:55–58.
Tan CH, Yang LJ, Luo R. J. Phys. Chem. B. 2006;110:18680–18687. PubMed
Tan C, Tan YH, Luo R. J. Phys. Chem. B. 2007;111:12263–12274. PubMed
Hawkins GD, Cramer CJ, Truhlar DG. Chem. Phys. Lett. 1995;246:122–129.
Hawkins GD, Cramer CJ, Truhlar DG. J. Phys. Chem. 1996;100:19824–19839.
Liu DC, Nocedal J. Math. Program. 1989;45:503–528.
Grimme S, Hujo W, Kirchner B. Phys. Chem. Chem. Phys. 2012;14:4875–4883. PubMed
Mladek A, Krepl M, Svozil D, Cech P, Otyepka M, Banas P, Zgarbova M, Jurecka P, Sponer J. Phys. Chem. Chem. Phys. 2013;15:7295–7310. PubMed
Kruse H, Grimme S. J. Chem. Phys. 2012;136:154101–154116. PubMed
Goerigk L, Kruse H, Grimme S. Chem. Phys. Chem. 2011;12:3421–3433. PubMed
Rudberg E. J. Phys.-Condes. Matt. 2012;24:072202. PubMed
Cohen AJ, Mori-Sanchez P, Yang WT. Chem. Rev. 2012;112:289–320. PubMed
Antony J, Grimme S. J. Comput. Chem. 2012;33:1730–1739. PubMed
Grimme S. Chem.-Eur. J. 2012;18:9955–9964. PubMed
Wang Y, Patel DJ. Structure. 1993;1:263–282. PubMed
Sponer J, Gabb HA, Leszczynski J, Hobza P. Biophys. J. 1997;73:76–87. PubMed PMC
Xu Y, Noguchi Y, Sugiyama H. Bioorgan. Med. Chem. 2006;14:5584–5591. PubMed
Lim KW, Amrane S, Bouaziz S, Xu WX, Mu YG, Patel DJ, Luu KN, Phan AT. J. Am. Chem. Soc. 2009;131:4301–4309. PubMed PMC
Parkinson GN, Lee MPH, Neidle S. Nature. 2002;417:876–880. PubMed
Gros J, Rosu F, Amrane S, De Cian A, Gabelica V, Lacroix L, Mergny JL. Nucleic Acids Res. 2007;35:3064–3075. PubMed PMC
Mergny JL, De Cian A, Ghelab A, Sacca B, Lacroix L. Nucleic Acids Res. 2005;33:81–94. PubMed PMC
Hud NV, Smith FW, Anet FAL, Feigon J. Biochemistry. 1996;35:15383–15390. PubMed
Smith FW, Feigon J. Nature. 1992;356:164–168. PubMed
Sket P, Virgilio A, Esposito V, Galeone A, Plavec J. Nucleic Acids Res. 2012;40:11047–11057. PubMed PMC
Song JN, Ji CG, Zhang JZH. Phys. Chem. Chem. Phys. 2013;15:3846–3854. PubMed
The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Extended molecular dynamics of a c-kit promoter quadruplex